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Abstract. The asymptotic behavior of a nonlinear continuous time filtering problem is studied
when the variance of the observation noise tends to 0. We suppose that the signal is a two-dimensional
process from which only one of the components is noisy and that a one-dimensional function of this
signal, depending only on the unnoisy component, is observed in a low noise channel. An approximate
filter is considered in order to solve this problem. Under some detectability assumptions, we prove
that the filtering error converges to 0, and an upper bound for the convergence rate is given. The
efficiency of the approximate filter is compared with the efficiency of the optimal filter, and the order
of magnitude of the error between the two filters, as the observation noise vanishes, is obtained.
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1. Introduction. Due to its vast application in engineering, the problem of fil-
tering a random signal Xt from noisy observations of a function h(Xt) of this signal
has been considered by several authors. In particular, the case of small observation
noise has been widely studied, and several articles are devoted to the research of
approximate filters which are asymptotically efficient when the observation noise van-
ishes. Among them, one notices a first group in which a one-dimensional system is
observed through an injective observation function h (see [4, 5, 7, 1]); in this case,
the filtering error is small when the observation noise is small, and one can find effi-
cient suboptimal finite-dimensional filters. The multidimensional case appears later
with [8, 9], but an assumption of injectivity of h is again required; in particular, the
extended Kalman filter is studied in [9]. See also previous work by Krener [6] for
systems with linear observations. When h is not injective, the process {Xt} cannot
always be restored from the observation of {h(Xt)}, so the filtering error is not always
small; such a case is studied in [3]. However, there are some classes of problems in
which {Xt} can be restored from {h(Xt)}; in these cases, the filtering error is small,
and one again looks for efficient suboptimal filters. For instance, {Xt} is sometimes
obtained from {h(Xt)} and its quadratic variation; see [2, 10, 11, 13]. Here, we are
interested in another case in which h(Xt) is differentiable with respect to the time t,
and {Xt} is obtained from {h(Xt)} and its derivative. As opposed to [9], the exis-
tence of a Lipschitz inverse of h is not assumed in this paper, as the dimension of the
measurements that we consider is lower than that of the state. More precisely, we
consider the framework of [12], which we now describe.

We consider the two-dimensional process Xt = (x
(1)
t , x

(2)
t ) given by the Itô equa-
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tion 
dx

(1)
t = f1(x

(1)
t , x

(2)
t ) dt,

dx
(2)
t = f2(x

(1)
t , x

(2)
t ) dt+ σ(x

(1)
t , x

(2)
t ) dwt,

(1.1)

with initial condition X0 = (x
(1)
0 , x

(2)
0 ), and we are concerned by the problem of

estimating the signal Xt when the observation process is modelled by the equation

dyt = h(x
(1)
t ) dt+ ε dw̄t,(1.2)

where {wt} and {w̄t} are standard independent real-valued Wiener processes and
ε is a small nonnegative parameter. In particular, if f1(x1, x2) = x2, then x

(1)
t is

the position of some moving body on R, x
(2)
t is its speed, the body is submitted to

a dynamical force described by f2 and to a random force described by σ, and one
has a noisy observation of the position. This class of problems arises in practice in
tracking RADAR applications, for instance, as well as in control and communications
engineering. The use of the method of proof introduced in [7] and later extended to
[9] in the class of systems (1.1)–(1.2) is not covered by previous work.

If ε = 0 and if the functions h and x2 �→ f1(x1, x2) are injective, then the signal
Xt can (at least theoretically) be exactly restored from the observation; we are here
interested by the asymptotic case ε → 0, and we look for a good approximation of
the optimal filter

X̂t = (x̂
(1)
t , x̂

(2)
t ) = E

[
Xt

∣∣ ys, 0 ≤ s ≤ t
]
.

This approximation should be finite-dimensional (a solution of a finite-dimensional
equation driven by yt).

The same problem has been dealt with in [12] (with σ constant) by means of a
formal asymptotic expansion of the optimal filter in a stationary situation. Our aim
is to work out a rigorous mathematical study of the filter proposed by [12], namely

the solution Mt = (m
(1)
t ,m

(2)
t ) of

dMt = f(Mt)dt+Rt[dyt − h(m
(1)
t )dt],(1.3)

Rt
def
=


√
2σ(Mt)F12(Mt)

h′(m(1)
t ) ε

σ(Mt)

ε

 ,(1.4)

with F12 = ∂f1/∂x2 and with initial condition M0 = E[X0]. This filter does in fact
correspond to the extended Kalman filter with stationary gain if one neglects the
contribution of the derivatives of f other than ∂f1/∂x2. The stability of this filter is
not evident and requires some assumptions. When it is stable, we prove in this work
that

x
(1)
t −m

(1)
t = O(ε3/4) , x

(2)
t −m

(2)
t = O(ε1/4) ,(1.5)

and

x̂
(1)
t −m

(1)
t = O(ε) , x̂

(2)
t −m

(2)
t = O(√ε) .(1.6)
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We also verify that (1.6) can be improved when σ is constant, h is linear, and f1 is
linear with respect to x2. (This case will be referred to as the almost linear case.)
The proofs follow the method of [9].

The contents are organized as follows. In section 2, we introduce the assumptions
which will be needed in what follows, and we study the filtering error as ε converges
to zero; more precisely, we obtain the rate (1.5). In section 3, the error between the
approximate filter and the optimal filter is studied, and we prove (1.6). Section 4 is
devoted to the almost linear case. Results of numerical simulations that illustrate the
performance of this approach are included in section 5.

Notation. The following notation is used:

f =

[
f1

f2

]
, Σ =

[
0
σ

]
, H =

[
h′ 0

]
;

F =
ˇ
F11 F12

F21 F22

˘

and Σ′ =
ˇ

0 0
Σ′

21 Σ′
22

˘

are the Jacobian matrices of f and Σ; ∇0Φ =
∂Φ
∂X0

is either a 2 × 2 matrix (if Φ is R2-valued) or a line-vector (if Φ is real-valued); see
section 3. The symbol ∗ is used for the transposition of matrices.

When describing the behavior of approximate filters, we will write asymptotic
expressions with the meaning given by the following definition.

Definition 1.1. Consider a real- or vector-valued stochastic process {ξt}. If β
is real and p ≥ 1, we will write that

ξt = O(εβ) in Lp

when, for some q ≥ 0, α > 0, and some positive constants C1, C2, c3,

E
[‖ξt‖p]1/p ≤ C1

εq
e−c3t/ε

α

+ C2ε
β

for t ≥ 0 and ε small. In this situation, the process {ξt} is usually said to converge
to zero with rate of order εβ, in a time scale of order εα.

2. Estimation of Xt−Mt. The following assumptions will be used throughout
this article. The last one depends on a parameter δ ≥ 1.
(H1) X0 is a random variable, the moments of which are finite.
(H2) {wt} and {w̄t} are standard independent Wiener processes independent of

X0.
(H3) The function h is C3 with bounded derivatives, and h′ is positive.
(H4) The function f is C3 with bounded partial derivatives, and F12 = ∂f1/∂x2 is

positive.
(H5) The function σ is C2 with bounded partial derivatives.

(H6.δ) One has

1

δ
≤ σ(x) ≤ δ,

1

δ
≤ h′(x1) ≤ δ,

1

δ
≤ F12(x) ≤ δ

for any x = (x1, x2).
Remark 2.1. In order to reduce the notation in (H6.δ), system (1.1)–(1.2) has

been rescaled. Indeed, if we assume instead that one has

1

δ
≤ σ(x)

σ̄
≤ δ,

1

δ
≤ h′(x1)

H̄
≤ δ,

1

δ
≤ F12(x)

F̄
≤ δ



1804 PAULA MILHEIRO DE OLIVEIRA AND JEAN PICARD

for any x = (x1, x2) and for some positive σ̄, H̄, and F̄ and if we replace the processes

x
(1)
t , x

(2)
t , and yt by x

(1)
t /(σ̄F̄ ), x

(2)
t /σ̄, and yt/(σ̄F̄ H̄), then the functions f1, f2, σ,

and h are replaced, respectively, by

f1(σ̄F̄ x1, σ̄x2)
/
(σ̄F̄ ), f2(σ̄F̄ x1, σ̄x2)

/
σ̄,

σ(σ̄F̄ x1, σ̄x2)
/
σ̄, h(σ̄F̄ x)

/
(σ̄F̄ H̄),

and ε is replaced by ε/(σ̄F̄ H̄). We can apply the filter (1.3) to this new system, and

we obtain m
(1)
t /(σ̄F̄ ) and m

(2)
t /σ̄. This shows that the problem can be reduced to

the case σ̄ = F̄ = H̄ = 1.
Assumption (H6.δ) says that the system does not contain too much nonlinearity;

when it is not satisfied, there may be a small positive probability for the filter to lose
the signal (see [10] for a similar problem). This is a rather restrictive condition, so
we discuss at the end of the section the general case in which it does not hold.

We consider the system (1.1)–(1.2) and the filter (1.3). We let Ft be the filtration
generated by (X0, wt, w̄t) and Yt the filtration generated by (yt).

Theorem 2.1. Assume (H1)–(H5). For 1 < δ < 21/5, if (H6.δ) holds, then one
has

x
(1)
t −m

(1)
t = O(ε3/4), x

(2)
t −m

(2)
t = O(ε1/4)

in Lp for any p ≥ 1.
Consider a change of basis defined by a matrix T and its inverse T−1, where

T
def
=

 √2/ε −1

0 1

 , T−1 =

 √ε/2
√

ε/2

0 1

 .

Then consider the process

Zt
def
= T (Xt −Mt).(2.1)

We are going to check that Zt is the solution of a linear stochastic differential equation;
the study of the exponential stability of this equation will enable the estimation of
both components of Zt, and the theorem will immediately follow.

An equation for Zt. From (1.1)–(1.3), we have

d(Xt −Mt) =
(
f(Xt)− f(Mt)

)
dt−Rt

(
h(x

(1)
t )− h(m

(1)
t )
)
dt

+


0 −

√
2ε σ(Mt)F12(Mt)

h′(m(1)
t )

σ(Xt) −σ(Mt)


[

dwt

dw̄t

]
.

In this equation, we introduce the Taylor expansions for the functions f and h,

f(Xt)− f(Mt) = F (ξt, µt)(Xt −Mt)

and

h(x
(1)
t )− h(m

(1)
t ) = h′(ηt)(x

(1)
t −m

(1)
t ) ,
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where {ξt}, {µt}, and {ηt} are R2- and R-valued processes depending on {Xt} and
{Mt}, and

F (ξt, µt)
def
=

 F11(ξt) F12(ξt)

F21(µt) F22(µt)

 .

We obtain a linear equation for Xt − Mt. By applying the transformation (2.1), we
deduce for Zt an equation of the type

dZt = At Zt dt+ Ut

[
dwt

dw̄t

]
.(2.2)

The precise computation shows that

At = T
(
F (ξt, µt)−RtH(ηt)

)
T−1 =

Āt√
2ε
+ Ãt ,

with

Ā
(11)
t = −2h′(ηt)

√
F12(Mt)σ(Mt)

h′(m(1)
t )

+ h′(ηt)σ(Mt), Ā
(12)
t = Ā

(11)
t + 2F12(ξt),

Ā
(21)
t = Ā

(22)
t = −h′(ηt)σ(Mt),

and where Ãt is a 2 × 2 matrix-valued process which is uniformly bounded as ε
converges to 0; similarly, the matrix-valued process Ut is also uniformly bounded.

Stability of At. If δ = 1, then h′ = F12 = σ = 1, so Āt is the constant matrix

Āt =

[ −1 1
−1 −1

]
,

and

Āt + Ā∗
t = −2 I.

In the general case δ > 1, the coefficients of Āt + Ā∗
t can be controlled so that this

matrix is uniformly close to −2I if δ is close to 1; in particular, for 1 < δ < 21/5,
there exists 0 < α < α′ <

√
2 such that

Āt + Ā∗
t ≤ −α′√2 I

and, therefore,

At +A∗
t ≤ − α√

ε
I(2.3)

if ε is small.
End of the proof of Theorem 2.1. Our goal is now to deduce an estimate of Zt in

L2p for the p integer. From Itô’s formula and (2.2), the process ‖Zt‖2 = Z∗
t Zt is the

solution of

d‖Zt‖2 = Z∗
t (At +A∗

t )Zt dt+ trace(U
∗
t Ut) dt+ 2Z

∗
t Ut

[
dwt

dw̄t

]
.
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We deduce that the moment of order p of ‖Zt‖2 is finite and that

d

dt
E[‖Zt‖2p] = pE[‖Zt‖2p−2Z∗

t (At +A∗
t )Zt] + pE[‖Zt‖2p−2trace(U∗

t Ut)]

+2 p (p− 1)E[‖Zt‖2p−4 ‖U∗
t Zt‖2] .

From (2.3), one has

Z∗
t (At +A∗

t )Zt ≤ − α√
ε
‖Zt‖2.

As a consequence of the Cauchy–Schwarz inequality, one has

‖U∗
t Zt‖2 ≤ trace(U∗

t Ut) ‖Zt‖2 .

Thus we obtain the inequality

d

dt
E[‖Zt‖2p] ≤ −p

α√
ε
E[‖Zt‖2p] + p (2p− 1)E[‖Zt‖2p−2trace(U∗

t Ut)]

≤ −p
α√
ε
E[‖Zt‖2p] + CpE[‖Zt‖2p−2] .

Moreover, there exists C ′
p such that

Cp‖Zt‖2p−2 ≤ p
α

2
√
ε
‖Zt‖2p + C ′

pε
(p−1)/2,

and so

d

dt
E[‖Zt‖2p] ≤ − α

2
√
ε
pE[‖Zt‖2p] + C ′

pε
(p−1)/2 .

By solving this differential inequality, one obtains that, for some C ′′
p > 0,

E[‖Zt‖2p] ≤ C ′′
p ε

p/2 + C ′′
p E[‖Z0‖2p] e−αp t/(2

√
ε) .(2.4)

Thus Zt is O(ε1/4), and the order of magnitude of the components of Xt−Mt follows
from (2.1) and the form of T−1.

We remark in (2.4) that the time scale of the estimation is of order
√
ε; one can

compare it with the time scale ε obtained when the observation function is injective
(see, for instance, [7]). This means that here it takes more time to estimate the
signal, and this is not surprising since the second component of the signal is not well
observed. There are also other systems where the time scale is not the same for the
different components of the signal (see [10]).

In Theorem 2.1, we need the assumption (H6.δ), which is a restriction to the
nonlinearity of the system; otherwise, it is difficult to ensure that the filter does not
lose the signal. (This problem also occurs in [10].) Actually, we have chosen the filter
(1.3) because it gives a good approximation of X̂t (see the next section), but it is not

the most stable one. If in (1.4) we replace the processes σ(Mt), F12(Mt), and h′(m(1)
t )

by constant numbers σ̄, F̄ , and H̄, then we obtain a filter with constant gain; we can
again work out the previous estimations and prove that the result of Theorem 2.1
holds for this filter without (H6.δ) as soon as

maxF12

F̄
< 2

minh′

H̄
.

Thus we have two filters—a filter which is stable and tracks the signal under rather
weak assumptions and the filter (1.3) which seems more fragile but gives (under good
stability assumptions) a better approximation of the optimal filter.
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3. Estimation of X̂t − Mt. The main result contained in this section is The-
orem 3.1, which states the rate of convergence of the approximate filter considered
in this paper toward the optimal filter. In order to give a proof of this theorem, a
sequence of steps is needed: a change of probability measure, the differentiation with
respect to the initial condition, and an integration by parts formula. A similar method
of proof is adopted in [9]. As in Theorem 2.1, we may have a problem of stability in
the general nonlinear case.

Theorem 3.1. Consider a finite time interval [0, τ ]. Assume (H1)–(H6.δ) and
the following:

(H7) The law of X0 has a C1 positive density p0 with respect to the
Lebesgue measure and ∇p0(X0)/p0(X0) is in L2.

If δ in (H6.δ) is close enough to 1, in the sense that 1 < δ < 22/9, then the filter Mt

given by (1.3) satisfies

x̂
(1)
t −m

(1)
t = O(ε), x̂

(2)
t −m

(2)
t = O(√ε)

in L2.
The rest of this section is devoted to the proof of this theorem.
Consider the matrix

Pt
def
=


1

h′(m(1)
t )

√
2σ(Mt)F12(Mt)

h′(m(1)
t )

ε3/2 σ(Mt)

h′(m(1)
t )

ε

σ(Mt)

h′(m(1)
t )

ε σ(Mt)

√
2σ(Mt)

h′(m(1)
t )F12(Mt)

ε1/2

 ,

which depends only on Mt. Notice that Pt is the solution of the stationary Riccati
equation

− 1

ε2
PtH

∗(Mt)H(Mt)Pt + F̃ (Mt)Pt + PtF̃
∗(Mt) + Σ(Mt)Σ

∗(Mt) = 0(3.1)

with

F̃ (Mt) =

[
0 F12(Mt)
0 0

]
and that the process Rt of (1.4) is

Rt =
Pt

ε2
H∗(Mt).(3.2)

We will also need the inverse of Pt, namely,

P−1
t =


h′(m(1)

t )

√
2h′(m(1)

t )

σ(Mt)F12(Mt)
ε−3/2 −h′(m(1)

t )

σ(Mt)
ε−1

−h′(m(1)
t )

σ(Mt)
ε−1 1

σ(Mt)

√
2h′(m(1)

t )F12(Mt)

σ(Mt)
ε−1/2

 .

Change of probability measure. Our random variables can be viewed as functions
of the initial condition X0 and of the Wiener processes w and w̄. We are going to
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make a change of variables; in view of the Girsanov theorem, this can be viewed as
a change of probability measure; however, all the estimations will be made under the
original probability P . Thus consider the new probability measure which is given on
Ft by

dṖ

dP

∣∣∣∣∣
Ft

= L−1
t ,

where

L−1
t = exp

{
−1

ε

∫ t

0

h(x(1)
s ) dw̄s − 1

2ε2

∫ t

0

h2(x(1)
s ) ds

}
.

The probability Ṗ is the so-called reference probability, and one checks easily from
the Girsanov theorem that yt/ε and wt are standard independent Wiener processes

under Ṗ . Let us define now the probability measure P̃ on Ft by

dP̃

dṖ

∣∣∣∣∣
Ft

= Λ−1
t ,

where

Λ−1
t = exp

{∫ t

0

Σ∗(Ms)P
−1
s (Xs −Ms) dws − 1

2

∫ t

0

(Σ∗(Ms)P
−1
s (Xs −Ms))

2 ds

}
.

Then the processes

w̃t = wt −
∫ t

0

Σ∗(Ms)P
−1
s (Xs −Ms) ds

and yt/ε are standard independent Wiener processes under P̃ . On the other hand,
one has

dXt = f(Xt) dt+Σ(Xt)Σ
∗(Mt)P

−1
t (Xt −Mt) dt+Σ(Xt) dw̃t(3.3)

and

log(LtΛt) =
1

ε2

∫ t

0

h(x(1)
s ) dys − 1

2ε2

∫ t

0

h2(x(1)
s ) ds−

∫ t

0

Σ∗(Ms)P
−1
s (Xs −Ms) dw̃s

(3.4)

−1
2

∫ t

0

(Σ∗(Ms)P
−1
s (Xs −Ms))

2 ds .

Differentiation with respect to the initial condition and an estimation. The ran-
dom variables involved in our computation can now be viewed as functions of X0,
{w̃t}, and {yt}; let us denote by ∇0 the differentiation with respect to the initial
condition X0 (computed in Lp). In particular, we can see on (3.3) and (3.4) that the
processesXt and log(LtΛt) are differentiable, and we obtain matrix- and vector-valued
processes, respectively. Our aim is to estimate the process

Vt
def
= (∇0 log(LtΛt) (∇0Xt)

−1 + (Xt −Mt)
∗P−1

t )U(3.5)
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with

U
def
=

[
1 1

0
√
2/ε

]
, U−1 =

[
1 −√ε/2

0
√

ε/2

]
.

Then an integration by parts will enable us to conclude.
By applying the operator ∇0 to (3.4), one gets

∇0 log(LtΛt) =
1

ε2

∫ t

0

h′(x(1)
s )∇0x

(1)
s (dys − h(x(1)

s )ds)

−
∫ t

0

Σ∗(Ms)P
−1
s ∇0Xs (dw̃s +Σ

∗(Ms)P
−1
s (Xs −Ms)ds)(3.6)

=
1

ε

∫ t

0

h′(x(1)
s )∇0x

(1)
s dw̄s −

∫ t

0

Σ∗(Ms)P
−1
s ∇0Xs dws .

We can also differentiate (3.3), and, if Σ′ is the Jacobian matrix of Σ, we obtain

d(∇0Xt) = [F (Xt) + Σ(Xt)Σ
∗(Mt)P

−1
t ]∇0Xt dt+Σ

′(Xt)∇0Xt dwt.

The matrix ∇0Xt is invertible, and Itô’s calculus shows that

d(∇0Xt)
−1 = −(∇0Xt)

−1[F (Xt) + Σ(Xt)Σ
∗(Mt)P

−1
t − Σ′2(Xt)] dt

(3.7) −(∇0Xt)
−1Σ′(Xt)dwt .

From this equation and (3.6), one can write that

d
(∇0 log(LtΛt)(∇0Xt)

−1
)
=
1

ε
H(Xt) dw̄t − Σ∗(Mt)P

−1
t dwt

−∇0 log(LtΛt)(∇0Xt)
−1Σ′(Xt) dwt

−∇0 log(LtΛt)(∇0Xt)
−1(3.8)

. [F (Xt) + Σ(Xt)Σ
∗(Mt)P

−1
t − Σ′2(Xt)]dt

+Σ∗(Mt)P
−1
t Σ′(Xt)dt

since one has h′(x(1)
t )∇0x

(1)
t (∇0Xt)

−1 = H(Xt).
On the other hand, from the equations of Xt and Mt ((1.1) and (1.3), respec-

tively), one has

d(Xt −Mt) = [f(Xt)− f(Mt)] dt−Rt[h(x
(1)
t )− h(m

(1)
t )] dt−Rtε dw̄t +Σ(Xt) dwt .

By writing the differential of P−1
t in the form

dP−1
t = J

(1)
t dt+ J

(2)
t dw̄t,

we obtain

d
(
(Xt −Mt)

∗P−1
t

)
= [f∗(Xt)− f∗(Mt)−R∗

t (h(x
(1)
t )− h(m

(1)
t ))]P−1

t dt

+Σ∗(Xt)P
−1
t dwt − εR∗

tP
−1
t dw̄t(3.9)

+(Xt −Mt)
∗[J (1)

t dt+ J
(2)
t dw̄t]− εR∗

tJ
(2)
t dt .
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One can write the Taylor expansions for f and h,

f(Xt)− f(Mt) = F (Mt)(Xt −Mt) + φt ,

h(x
(1)
t )− h(m

(1)
t ) = H(Mt)(Xt −Mt) + γt,

with

‖φt‖ ≤ C‖Xt −Mt‖2, |γt| ≤ C|x(1)
t −m

(1)
t |2.

By using these expansions together with the consequence of (3.2),

H∗(Mt)R
∗
tP

−1
t =

1

ε2
H∗(Mt)H(Mt),

in (3.9), we obtain

d((Xt −Mt)
∗P−1

t ) = (Xt −Mt)
∗
(
F ∗(Mt)P

−1
t − 1

ε2
H∗(Mt)H(Mt)

)
dt

+Σ∗(Xt)P
−1
t dwt − εR∗

tP
−1
t dw̄t

+(Xt −Mt)
∗[J (1)

t dt+ J
(2)
t dw̄t]− εR∗

tJ
(2)
t dt

+(φ∗
t − γtR

∗
t )P

−1
t dt .

By adding this equation to (3.8), we obtain that the process Vt of (3.5) satisfies

d
(
VtU

−1
)
= −VtU

−1[F (Xt) + Σ(Xt)Σ
∗(Mt)P

−1
t − Σ′2(Xt)]dt− VtU

−1 Σ′(Xt) dwt

+
1

ε
H(Xt)dw̄t − Σ∗(Mt)P

−1
t dwt +Σ

∗(Mt)P
−1
t Σ′(Xt)dt

+(Xt −Mt)
∗Stdt+ (Xt −Mt)

∗P−1
t Σ′(Xt)dwt +Σ

∗(Xt)P
−1
t dwt(3.10)

−εR∗
tP

−1
t dw̄t + (Xt −Mt)

∗[J (1)
t dt+ J

(2)
t dw̄t]− εR∗

tJ
(2)
t dt

+(φ∗
t − γtR

∗
t )P

−1
t dt,

where St is the matrix given by

St
def
= − 1

ε2
H∗(Mt)H(Mt) + F ∗(Mt)P

−1
t + P−1

t F (Xt)
(3.11)

+P−1
t Σ(Xt)Σ

∗(Mt)P
−1
t − P−1

t Σ′2(Xt) .

Consider also the matrix-valued process

At
def
= −U−1[F (Xt) + Σ(Xt)Σ

∗(Mt)P
−1
t − Σ′2(Xt)]U .(3.12)

Then (3.10) can be written in the form

dVt = VtAtdt− VtU
−1Σ′(Xt)Udwt + J

(3)
t dt+ J

(4)
t dwt + J

(5)
t dw̄t,

(3.13)
V0 = (X0 −M0)

∗P−1
0 U,

where

J
(3)
t = Σ∗(Mt)P

−1
t Σ′(Xt)U + (Xt −Mt)

∗StU + (Xt −Mt)
∗J (1)

t U

−εR∗
tJ

(2)
t U + (φ∗

t − γtR
∗
t )P

−1
t U,

J
(4)
t = (Σ∗(Xt)− Σ∗(Mt))P

−1
t U + (Xt −Mt)

∗P−1
t Σ′(Xt)U,

J
(5)
t =

1

ε
H(Xt)U − εR∗

tP
−1
t U + (Xt −Mt)

∗J (2)
t U

=
1

ε
(H(Xt)−H(Mt))U + (Xt −Mt)

∗J (2)
t U
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(apply (3.2) for the last line). We deduce that E[‖V0‖2] is of order ε−3 and that

d

dt
E[‖Vt‖2] = E[Vt(At +A∗

t )V
∗
t ] + 2E[J

(3)
t V ∗

t ]
(3.14)

+E[‖VtU
−1Σ′(Xt)U + J

(4)
t ‖2] + E[‖J (5)

t ‖2] .

We have to estimate the terms of the right-hand side.
By computing the matrix At, we obtain that

At =
Āt√
2ε
+ Ãt

with

Ā
(11)
t = −Ā

(21)
t = −h′(m(1)

t )σ(Xt) ,

Ā
(12)
t = −2F12(Xt)− h′(m(1)

t )σ(Xt) + 2σ(Xt)

√
h′(m(1)

t )F12(Mt)

σ(Mt)
,

Ā
(22)
t = h′(m(1)

t )σ(Xt)− 2σ(Xt)

√
h′(m(1)

t )F12(Mt)

σ(Mt)
,

and Ãt is uniformly bounded. As in the proof of Theorem 2.1, we see that, if δ = 1,
then the matrix Āt is simply

Āt =

[ −1 −1
1 −1

]
,

which satisfies

Āt + Ā∗
t = −2 I .

Thus, for 0 < α <
√
2, when δ is close enough to 1, that is, 1 < δ < 22/9, and when ε

is small enough, we have

At +A∗
t ≤ − α√

ε
I .(3.15)

We also notice that

2J
(3)
t V ∗

t ≤ α

3
√
ε
‖Vt‖2 + C

√
ε‖J (3)

t ‖2

and that

‖VtU
−1Σ′(Xt)U + J

(4)
t ‖2 ≤ C‖Vt‖2 + 2‖J (4)

t ‖2

because U−1Σ′(Xt)U is bounded. Thus (3.14) implies that, for small ε,

d

dt
E[‖Vt‖2] ≤ − α

3
√
ε
E[‖Vt‖2] + C

√
εE[‖J (3)

t ‖2]

(3.16)
+2E[‖J (4)

t ‖2] + E[‖J (5)
t ‖2] .
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Let us first estimate J
(3)
t . We deduce from the Riccati equation (3.1) satisfied by

Pt that the process St defined in (3.11) satisfies

St =
(
F ∗(Mt)− F̃ ∗(Mt)

)
P−1
t + P−1

t

(
F (Xt)− F̃ (Mt)

)
+P−1

t

(
Σ(Xt)− Σ(Mt)

)
Σ∗(Mt)P

−1
t − P−1

t Σ′2(Xt).

By computing this matrix and applying Theorem 2.1, we check that

St =

[ O(ε−7/4) O(ε−5/4)
O(ε−5/4) O(ε−3/4)

]
in the spaces Lp. Thus

(Xt −Mt)
∗StU = O(ε−1).

The term Σ∗(Mt)P
−1
t Σ′(Xt)U is easily shown to have the same order of magnitude.

On the other hand, by looking at the equation of Mt and by applying Itô’s formula,
we can prove that, for any C2 function ρ with bounded derivatives, one has

dρ(Mt) = O(ε−1/4)dt+O(1)dw̄t.

By applying this result to the functions involved in P−1
t , it appears that

J
(1)
t =

[ O(ε−7/4) O(ε−5/4)
O(ε−5/4) O(ε−3/4)

]
, J

(2)
t =

[ O(ε−3/2) O(ε−1)
O(ε−1) O(ε−1/2)

]
.

We deduce that the terms of J
(3)
t involving J

(1)
t and J

(2)
t are also of order ε−1. Finally,

φt and γt are, respectively, of order ε
1/2 and ε3/2, and so the last term is of order ε−1,

and we deduce that

J
(3)
t = O(ε−1).

We can also estimate J
(4)
t and J

(5)
t and check that they are of order ε−3/4. Thus

(3.16) enables us to conclude that

Vt = O(1/√ε)

in L2. We can take the conditional expectation with respect to Yt in this estimation
because the conditional expectation is a contraction in L2; thus E[Vt|Yt] is O(1/

√
ε)

in L2, and, therefore, we obtain from the definition (3.5) that

(X̂t −Mt)
∗P−1

t U = −E[∇0 log(LtΛt)(∇0Xt)
−1U |Yt] +O(1/√ε).(3.17)

Application of an integration by parts formula. The estimation of the right-hand
side of (3.17) can be completed by means of an integration by parts formula. It is
proved in Lemma 3.4.2 of [9] that, if G = G(X0, w̃, y) is a functional defined on the
probability space which is differentiable with respect to the initial condition (in the
spaces Lp) and if ∇i

0 is the differentiation with respect to the ith component of X0,
then

E[G∇i
0 log(LtΛt) +G(p−1

0 ∂p0/∂xi)(X0) +∇i
0G|Yt] = 0.(3.18)
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We can write (3.7) in the form

d(∇0Xt)
−1 = −(∇0Xt)

−1(F (Xt) + Σ(Xt)Σ
∗(Mt)P

−1
t − Σ′2(Xt)

+Σ′(Xt)(Σ
∗(Mt)P

−1
t (Xt −Mt)))dt(3.19)

−(∇0Xt)
−1Σ′(Xt)dw̃t

with (∇0X0)
−1 = I. This equation can be differentiated with respect to X0, and so

we can apply the integration by parts formula (3.18) to the coefficients of the matrix
(∇0Xt)

−1. Denote by (∇0Xt)
−1
i its ith line. Then

E[(∇0Xt)
−1
i ∇i

0 log(LtΛt) + (∇0Xt)
−1
i (p−1

0 ∂p0/∂xi)(X0) +∇i
0(∇0Xt)

−1
i |Yt] = 0.

By summing on i and multiplying by U, we have

E

[
∇0 log(LtΛt)(∇0Xt)

−1U + (p−1
0 p′0)(X0)(∇0Xt)

−1U

(3.20)

+
∑
i

∇i
0(∇0Xt)

−1
i U

∣∣∣ Yt

]
= 0.

The first term of (3.20) is exactly the term that we want to estimate in (3.17).
For the second term of (3.20), if

Ψt
def
= (p−1

0 p′0)(X0) (∇0Xt)
−1U,

we have from (3.7) and (3.12) that

Ψ0 = (p
−1
0 p′0)(X0)U, dΨt = ΨtAt dt−ΨtU

−1Σ′(Xt)U dwt.

We proceed as in the study of (3.13). The stability of the matrix At, which has
been obtained in (3.15), and the boundedness of U−1Σ′(Xt)U imply that (∇0Xt)

−1

is exponentially small in L2, and so the second term is negligible.
Let us study the third term of (3.20). If

Φi
t = ∇i

0(∇0Xt)
−1
i U,

then by differentiating (3.19) and transforming w̃ back into w, we get

dΦi
t = Φ

i
tAtdt− Φi

t U
−1Σ′(Xt)U dwt − (∇0Xt)

−1
i ∇i

0ρ(Xt,Mt)U dt

−Σ∗(Mt)P
−1
t ∇i

0Xt(∇0Xt)
−1
i Σ′(Xt)U dt− (∇0Xt)

−1
i ∇i

0

(
Σ′(Xt)

)
U dwt

with

ρ(Xt,Mt)
def
= F (Xt) + Σ(Xt)Σ

∗(Mt)P
−1
t − Σ′2(Xt).

By summing on i and using

∑
i

(∇0Xt)
−1
i ∇i

0ρ(Xt,Mt) =
∑
i,j

∇i
0X

j
t (∇0Xt)

−1
i

∂ρ

∂xj
(Xt,Mt) =

∑
j

∂ρj
∂xj

(Xt,Mt),
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where ρj is the jth line of ρ, we obtain that Φt =
∑
Φi

t is the solution of

Φ0 = 0, dΦt = ΦtAt dt− ΦtU
−1Σ′(Xt)U dwt −

∑
j

∂ρj
∂xj

(Xt,Mt)U dt

(3.21)

−Σ∗(Mt)P
−1
t Σ′(Xt)U dt− ∂σ′

∂x2
(Xt)U dwt,

where σ′ is the Jacobian of σ. A computation shows that

∂ρj
∂xj

(Xt,Mt) =

[ O(1) O(1)
O(ε−1) O(ε−1/2)

]
.

The multiplication on the right by U yields a process of order ε−1; the term Σ∗(Mt)
.P−1

t Σ′(Xt)U is also O(ε−1), and the term involving the second derivative of σ is
O(ε−1/2). By proceeding again as in the study of (3.13), we deduce that Φt is of
order ε−1/2.

Thus (3.17), (3.20), and the estimation of Ψt and Φt yield

(X̂t −Mt)
∗P−1

t U = O(1/√ε).

We multiply on the right by the matrix U−1Pt, the coefficients of which are of order
ε3/2 for the first column and ε for the second column, and we deduce the order of
X̂t −Mt which was claimed in the theorem.

4. An almost linear case. It is interesting to consider a particular case in
which σ, h′, and F12 are constant so that the system (1.1)–(1.2) is

dx
(1)
t =

(
f0
1 (x

(1)
t ) + F12x

(2)
t

)
dt,

dx
(2)
t = f2(x

(1)
t , x

(2)
t ) dt+ σ dwt,

dyt = h′x(1)
t dt+ ε dw̄t.

(4.1)

In particular, (H6.δ) holds with δ = 1. Then it is possible to improve the upper
bounds given in Theorem 3.1. The time interval that we consider may be infinite.
The result is stated in the following proposition.

Proposition 4.1. Assuming that (H1)–(H7) hold for (4.1), the filter Mt given
by (1.3) verifies

x̂
(1)
t −m

(1)
t = O(ε5/4), x̂

(2)
t −m

(2)
t = O(ε3/4)

in L2.
Proof. The proof closely follows the sequence of steps adopted in Theorem 3.1.

The matrices Pt = P and Rt = R are now constant; the processes J
(1)
t , J

(2)
t , J

(4)
t ,

and J
(5)
t are zero. The order of St is improved into

St =

[ O(ε−3/2) O(ε−1)
O(ε−1) O(ε−1/2)

]
,

and

|φ(1)
t | ≤ C|x(1)

t −m
(1)
t |2 = O(ε3/2), |φ(2)

t | ≤ C‖Xt −Mt‖2 = O(ε1/2)
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so that

J
(3)
t = (Xt −Mt)

∗StU + φ∗
tP

−1U

is of order ε−3/4. Thus Vt is O(ε−1/4), and we obtain O(ε−1/4) in (3.17).
For the end of the proof, we see that

ρ(Xt,Mt) = F (Xt) + ΣΣ
∗P−1,

and so

∂ρj
∂xj

(Xt,Mt) =
∂Fj

∂xj
(Xt)

is bounded. Multiplication by U yields a process of order ε−1/2, and so the process
Φt of (3.21) is bounded for small ε. We can conclude that

(X̂t −Mt)
∗P−1

t U = O(ε−1/4)

and deduce the proposition.
With more computational effort, it is possible to extend these results to the case

in which the component x(1) is driven by low noise:

dx
(1)
t =

(
f0
1 (x

(1)
t ) + F12x

(2)
t

)
dt+ εγ dw

(1)
t ,

dx
(2)
t = f2(x

(1)
t , x

(2)
t ) dt+ σ dw

(2)
t ,

dyt = h′x(1)
t dt+ ε dw̄t

(4.2)

with Mt given by (1.5) and with the gain Rt given by (1.4), as before, if γ > 1/2, and
with Rt given by

Rt
def
=


√
2σF12

h′ + 1
1√
ε

σ

ε


if γ = 1/2.

Clearly, Theorem 2.1 extends to system (4.2) as soon as γ ≥ 1/2. This results
from the fact that, in the SDE of Zt, the matrices involved in the martingale terms
are still uniformly bounded as ε converges to 0, and the matrix At of (2.2) has the
same stability property as before.

Regarding the extension of Proposition 4.1 to system (4.2), one can see that,
assuming γ ≥ 3/4, the estimation in Proposition 4.1 still holds. This happens because
the matrix Āt in the decomposition of At remains the same. More effort is needed if
one considers the cases 1/2 < γ < 3/4 and γ = 1/2.

Another class of almost linear filtering problems when some of the observations
and driving noises are small is considered by Krener [6]. Krener studied the multi-
dimensional case, where nonlinearities depend only on state variables which can be
estimated quickly and accurately; that is, the only nonlinearity allowed in (4.2) is that

of the function f2 with respect to x
(1)
t . Observations with at least two components,

instead of one, are also assumed.
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Fig. 5.1. Estimation errors for the (a) first and (b) second components of X computed on a
single trajectory.

5. Numerical simulation results. Let us consider the following example il-
lustrating the case of free fall of a body through the atmosphere:{

dx
(1)
t = x

(2)
t dt,

dx
(2)
t = (ρ0e

−x
(1)
t /k(x

(2)
t )2/(2β)− g) dt+ σdwt

and

dyt =

√
(x

(1)
t )2 + a2 dt+ ε dw̄t,

where x
(1)
t is the position of the moving body and x

(2)
t is its speed, ρ0 being the

reference air density, k the atmosphere thickness, β the ballistic coefficient of the body,
g the acceleration due to gravity, and a the horizontal distance between the body and
the measuring device (ρ0 = 3.4×10−3 lb s2/ft4, k = 22×103 ft, β = 1.6×103 lb2/ft4,
g = 32.2 ft/s2, σ = 5 ft/s, and a = 104 ft). Figure 5.1 shows the estimation errors
obtained from applying the two approximate filters (filter (1.5), noted Mt, and the
constant gain filter mentioned at the end of section 2 with H̄ = 0.02, noted M̄t) to a
single trajectory of the state with measurements taken each 0.001 s. The parameter
ε is equal to 1 and

X0 ∼ N
([

3× 105
−103

]
,

[
900 0
0 2× 104

])
.

It illustrates the fact that the errors get small very quickly, and one notices that the
constant gain filter needs more time than filter (1.5) to attain small errors in the
second component.
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Fig. 5.2. Estimation errors for the (a) first and (b) second components of X.
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Fig. 5.3. Estimation errors for the (a) first and (b) second components of X (G = 0.5).

Figure 5.2 illustrates the asymptotic behavior of the estimation errors when
system (1.1)–(1.2) with f(x1, x2) = [x2 − 1.5× 10−3x2

1]
∗
, σ = 2, and h(x1) =√

x2
1 + 10

8 is considered. Although f and h′ fail to verify assumption (H3) and, in
fact, inf h′ = 0, we will assume that the state remains in a bounded domain with high
probability, thus assuming that inf h′ > 1/

√
120. The root mean square error between

the two approximate filters (with H̄ = 0.18) was computed for ε = 1, 10−1, . . . , 10−4

over 200 simulations for both components in the time interval [0, 5]. The solid lines
exhibit approximate slopes of −0.76 (first component) and −0.28 (second component)
which agree with the results in section 2. The error associated with the constant gain
filter and that associated to filter (1.5) are very similar.

Figures 5.3–5.5 illustrate the van der Pol oscillator example presented in [12,
section 6]: f(x1, x2) = [x2 − x1 − x2]

∗
, σ = 1, and h(x1) = 0.606(1 − G)x1 +
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Fig. 5.4. Estimation errors for the (a) first and (b) second components of X (G = 0.8).

0.0001

0.001

0.01

-0.5 0 0.5 1 1.5

R
M
S
er
ro
r

− log ε

X−M
X−M̃
M−M̃

(a)

0.0001

0.001

0.01

-0.5 0 0.5 1 1.5

R
M
S
er
ro
r

− log ε

XX−M
X−M̃
M−M̃

(b)

Fig. 5.5. Estimation errors for the (a) first and (b) second components of X (G = 0.9).

Gx3
1 with G = 0.5, 0.8, 0.9, respectively. The time interval [0, 100] was considered.

One can observe the increasing benefit of using filter (1.5) as the nonlinearity in the
observations gets stronger. The results obtained by using the extended Kalman filter
(EKF) are also shown in [12] for comparison.
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