
GRADIENT ESTIMATES FOR SOME
DIFFUSION SEMIGROUPS

Jean Picard
Laboratoire de Mathmatiques Appliques (CNRS-UMR 6620)

Universit Blaise Pascal

63177 Aubire Cedex, France

E-mail: Jean.Picard@math.univ-bpclermont.fr

Abstract. Consider the semigroup Pt of an elliptic diffusion; we describe
a simple stochastic method providing gradient estimates on Ptf . If N is a
manifold endowed with a connection, the method can also be applied to the
associated nonlinear semigroup Qt acting on N -valued maps. With a local-
ization technique, we deduce gradient estimates for real harmonic functions
or N -valued harmonic maps. Moreover, the results are extended to a class
of hypoelliptic diffusions.

Keywords. Gradient estimates, Harmonic functions, Harmonic maps, El-
liptic diffusions, Hypoelliptic diffusions.

Mathematics Subject Classification (2000). 60J60 60H07 58E20 58J65

1



1 Introduction

Consider the semigroup Pt = etL of a diffusion with generator L on a manifold
M . If f is a real-valued function defined on M , the derivative d(Ptf) of the
function x 7→ Ptf(x) takes its values in the cotangent bundle T ?M , and we
are interested in estimations of this derivative with stochastic methods. More
precisely, we look for estimates of the form∣∣d(Ptf)

∣∣ ≤ Cq,t Pt(|f |q)1/q (1.1)

for t > 0 and q > 1. This problem can be generalised in several ways.
First, it can be localized; the function h(t, x) = Ptf(x) is solution of the heat
equation

∂

∂t
h = Lh, h(0, .) = f (1.2)

on R+ ×M , and if D is an open subset of M , one can consider a function h
which is only solution on R+ × D, and estimate its derivative dh(t, x) with
respect to x. For instance, by considering functions h(x) which do not de-
pend on t, we want to obtain estimates for the derivative of functions which
are harmonic on D. Notice that such functions have a well known stochas-
tic interpretation; they map the diffusion to a real martingale. A second
generalisation is to replace the target space R of the function by a manifold
N endowed with a connection; the connection provides the exponential map
expy : TyN → N and its reverse map exp−1

y which is defined on a neighbour-
hood of y; if f : M → N is a C2 map, one can consider the tension field of
f , namely

LNf : M → TN x 7→ LNf(x) = L(exp−1
f(x) f)(x) ∈ Tf(x)N.

Then the semigroup Pt is replaced by a nonlinear semigroup Qt which acts
on functions f : M → N and is given by the equation

d

dt
Qtf = LN(Qtf), Q0f = f. (1.3)

This semigroup has a stochastic interpretation similar to the real-valued case,
but real martingales have to be replaced by N -valued martingales (we refer
to [14] for basic results about manifold-valued martingales). One can prove
that Qtf is defined for any t ≥ 0 if N satisfies some convexity assumptions,
for instance if N is a regular geodesic ball of a Riemannian manifold (see
the definition in Example 3.2); the stochastic method for the construction
of Qtf is to prove the existence of N -valued martingales with prescribed
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terminal values, see [17, 22, 23, 1]. The derivative d(Qtf) takes its values in
the bundle of linear maps L(TM, TN) =

⋃
(x,y) L(TxM,TyN), and we would

like to obtain an estimate similar to the real-valued case (1.1).

First notice that if L satisfies Hrmander’s conditions, then it is well known
that its semigroup has a smooth density and can be written as

Ptf(x) =

∫
M

f(z)p(t, x, z)dz. (1.4)

Then estimates on the derivative of p(t, x, z) with respect to x such as [20]
imply that Ptf is smooth, and moreover, one can deduce estimates on d(Ptf).
However, this method cannot be applied for d(Qtf) because the nonlinear
semigroup has no representation of type (1.4); a calculation using local co-
ordinates enables to study the smoothness of Qtf (see [24], see also [16] for
symmetric diffusions with an analytical method), but this technique does not
provide good gradient estimates.

Thus we are looking for a direct method which does not use the density of
the diffusion. A first possibility is to use a coupling method; this method has
been worked out in the elliptic case for Ptf in [7]; it has also been extended
in [19] to the study of the N -valued semigroup Qtf , but it is not simple (one
needs to study the Hlder continuity before the Lipschitz continuity), and it
does not cover the case where N is a general regular geodesic ball. Another
possibility is to apply the Bismut formula of [6] which gives an expression
for d(Ptf) involving f but not its derivatives; this type of formula has been
widely studied and enables to obtain some estimates in the elliptic case,
see [12, 26, 27, 29, 28]. Some formulae can also be given for the manifold-
valued case, see [4, 2], but gradient estimates for general regular geodesic
balls are again not given. The method has also been extended in [3] to the
hypoelliptic case, but it does not seem easy to deduce gradient estimates for
the manifold-valued case.

Here, we consider a method which relates these gradient estimates to the
estimation of the quadratic variation of a martingale (real or on N); then, by
applying Burkholder and Doob inequalities, one notices that this quadratic
variation is dominated by the final value of the martingale (or of some func-
tion of the martingale in the manifold case, see [8] for the Burkholder inequal-
ities in this case). This method is worked out in the elliptic case, in Section
2 for the real-valued case, and in Section 3 for the manifold-valued case; in
particular it provides estimates of d(Qtf) when N is a regular Riemannian
geodesic ball, or when N is a small enough subset of a manifold endowed
with a connection. Moreover, we show in Section 4 that the method also
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works for a class of hypoelliptic diffusions; more precisely, if L is written in
Hrmander’s form

L = Ξ0 +
n∑

i=1

Ξ2
i /2, (1.5)

we obtain the estimate when the tangent space at a point x is linearly gen-
erated by Ξi and the commutators [Ξi,Ξj] taken at x ; the simplest example
is the hypoelliptic Brownian motion on the Heisenberg group; this result is
obtained by using the invariance by rotation of the Wiener process. The
more general hypoelliptic case (where one considers Lie brackets of arbitrary
length) apparently cannot be dealt with by our method, so the problem of
obtaining gradient estimates for Qtf in this framework is still open.

2 The elliptic case

The results of this section are not new and can be deduced from Malliavin’s
calculus or Bismut’s formula as it was described in the introduction; how-
ever the method of this section will again be applied subsequently (for the
manifold-valued and hypoelliptic cases), and we prefer to introduce it in a
simple framework. We suppose that M is a finite dimensional C∞ manifold
and that Xt is a diffusion on M with generator L written in Hrmander’s form
(1.5) with C∞ vector fields Ξi. If W i

t , 1 ≤ i ≤ n, are standard independent
real Wiener processes, this diffusion can be written as the solution Xt = Xx

t

of the Stratonovich equation

δXt = Ξ0(Xt)δt+
n∑

i=1

Ξi(Xt)δW
i
t , X0 = x. (2.1)

One can choose a C∞ modification of the stochastic flow x 7→ Xx
t . The

superscript x will often be omitted.

2.1 Gradient estimates on the semigroup

Suppose that the diffusion is elliptic, so that the vector space generated by
Ξi(x), 1 ≤ i ≤ n, is the whole tangent space TxM , and let us estimate d(Ptf)
for a bounded Borel function f and a time t > 0. The function d(Ptf) takes
its values in the cotangent bundle T ?M , and we need a Riemannian metric
on M in order to estimate it; this provides a norm on TxM ∼ T ?

xM ; however,
the order of the estimate will not depend on this metric if M is compact.
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Theorem 1. Assume that M is compact and that the diffusion is elliptic.
Let q > 1. Then there exists a constant C such that∣∣d(Ptf)(x)

∣∣ ≤ C√
t ∧ 1

Pt(|f |q)(x)1/q (2.2)

for any x in M , any t > 0 and any bounded Borel function f .

Remark 2.1. In all this work, the letter C will denote a positive constant
which may change from a formula to the other.

Proof. It is sufficient to prove the result for smooth functions f because the
general case can be dealt with by approximating f by Pεf as ε ↓ 0. The
proof can also be reduced to the time interval 0 ≤ t ≤ 1; then, for t > 1, one
can write Ptf = P1Pt−1f , and therefore∣∣d(Ptf)

∣∣ ≤ C P1

(
|Pt−1f |q

)1/q ≤ C Pt(|f |q)1/q.

So let t ≤ 1. The process

Y x
s = Pt−sf(Xx

s ), 0 ≤ s ≤ t

is a martingale which is given by

Ys = Ptf(x) +
∑

i

∫ s

0

Ξi

(
Pt−uf

)
(Xu)dW

i
u. (2.3)

By differentiating Y x
s with respect to x, if Js : TxM → TXx

s
M is the Jacobian

of the map x 7→ Xx
s , we obtain a process

Y ′
s = d(Pt−sf)(Xs)Js,

with values in T ?
xM . We deduce from the compactness of M that E|Y ′

s |2 is
bounded with respect to x; in particular, we can exchange the conditional
expectation and the differentiation in order to prove that Y ′

s inherits the
martingale property of Ys. Thus

Y ′
0 =

1

t
E

∫ t

0

Y ′
sds, (2.4)

so ∣∣d(Ptf)(x)
∣∣ =

1

t

∣∣∣E ∫ t

0

d(Pt−sf)(Xs)Jsds
∣∣∣

≤ 1√
t

∥∥∥sup
s≤1

|Js|
∥∥∥

q′

∥∥∥(∫ t

0

∣∣d(Pt−sf)(Xs)
∣∣2ds)1/2∥∥∥

q
(2.5)
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with 1/q + 1/q′ = 1, and where |Js| is the operator norm of Js. The process
Jt is obtained by differentiating the equation (2.1) of Xt, and since M is
compact, standard estimates show that the Lq′ norm is bounded (indepen-
dently of x). Moreover, it follows from (2.3) and the ellipticity assumption
that the integral in the right hand side of (2.5) is dominated by the quadratic
variation

〈Y, Y 〉t =

∫ t

0

∑
i

∣∣∣Ξi(Pt−sf)(Xs)
∣∣∣2ds (2.6)

of the martingale Ys, so∣∣d(Ptf)(x)
∣∣ ≤ C√

t

∥∥〈Y, Y 〉1/2
t

∥∥
q
.

Finally, we deduce from the Burkholder and Doob inequalities that∣∣d(Ptf)(x)
∣∣ ≤ C√

t
‖Yt‖q =

C√
t
Pt(|f |q)(x)1/q.

Remark 2.2. In (2.4), one can replace Y ′
s , and therefore Js, by its conditional

expectation Js given (Xu;u ≤ s), so that

d(Ptf)(x) =
1

t
E

∫ t

0

d(Pt−sf)(Xs)Jsds. (2.7)

In particular, let M be a compact Riemannian manifold and suppose that
L = ∆/2 for the Laplace-Beltrami operator ∆; then Xt is the Brownian
motion on M . One can consider M as a Riemannian submanifold of an
Euclidean space Rn with canonical basis (ei; 1 ≤ i ≤ n); then Xt can be
viewed as the solution of an equation (2.1) where Ξ0(x) = 0 and Ξi(x),
1 ≤ i ≤ n, are the orthogonal projections of the vectors ei on TxM ; with this
representation, the process Xt becomes a gradient Brownian system, see [10]
for details; it is uniformly elliptic. In this case, Js is computed in [13, 11]
(this is called filtering out redundant noise). It appears that it is the solution
of the covariant differential equation

D

ds
Js = −1

2
Ric?(Xs)Js

for the Ricci curvature considered as a linear operator on the tangent space;
thus a lower bound on the Ricci curvature implies an upper bound on |Js|
and can be used in (2.7); then one can go on as in the previous proof. The
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advantage of this approach is that it provides bounds with geometrical mean-
ing; in functional analytic terms, it is related to the Bochner formula (see
[25]). For more general diffusions, these bounds can also be obtained by
applying the iterated “carr du champ” (Γ2) technique, and an analogue of
the Ricci curvature is again involved, see [5] or Lemma 1.3 of [21]. However,
the method of Theorem 1 can be found simpler if the diffusion is given as a
solution of a stochastic differential equation.

Remark 2.3. Another advantage of Js with respect to Js is that Js is in L∞.
Thus (2.5) can be written with q = 1. However, the Doob inequality is not
valid for q = 1, so we cannot obtain (2.2); we only can use a modification of
Doob’s inequality (see (25.2) in [9]) to get∣∣d(Ptf)(x)

∣∣ ≤ C√
t ∧ 1

(
1 + Pt(|f | log+ |f |)(x)

)
.

Remark 2.4. One can add a constant to the function f in Theorem 1, so for
any real y0 one has∣∣d(Ptf)(x)

∣∣ ≤ C√
t ∧ 1

Pt(|f − y0|q)(x)1/q. (2.8)

In particular, for q = 2 and y0 = Ptf(x), we obtain the standard deviation
of f(Xx

t ) in the right-hand side.

Remark 2.5. One can also estimate higher order derivatives of Ptf . For the
second order derivative, one studies the martingale Y ′′

s which is the second
order derivative of Y x

s . The value Y ′′
0 is given by an equation similar to (2.4),

and the right hand side is estimated by means of the quadratic variations of
Ys and Y ′

s .

2.2 Localization and estimates for harmonic functions

The above procedure can be localized in order to estimate derivatives of
functions h(t, x) which are solutions of the heat equation (1.2) on a part
of R+ ×M ; the localization can also be used to study Ptf when M is not
compact (see also subsection 2.3 below). If D is an open subset of M , we
consider the space-time process Zt,x

s = (t − s,Xx
s ), 0 ≤ s ≤ t, and we let τ

be the first exit time of R+ × D for this process. Then a smooth function
h(t, x) is solution of the heat equation ∂h/∂t = Lh on R+ ×D if h(Zt,x

s∧τ ) is
a martingale for any (t, x). Like previously, we fix a Riemannian metric on
M .

7



Theorem 2. Suppose that the diffusion is elliptic and consider a smooth
bounded function h which is solution of the heat equation on R+ ×D. Let ρ
be the distance function to the complement of D, and let q > 1. Let dh(t, x)
be the derivative of h(t, x) with respect to x. For any compact subset K of
M , there exists a CK > 0 which does not depend on h such that

|dh(t, x)| ≤ CK

1 ∧
√
t ∧ ρ(x)

(
E|h(Zt,x

τ )|q
)1/q

(2.9)

for x ∈ K ∩D and t > 0. In particular, if h(t, x) = h(x) is harmonic on D,
then

|dh(x)| ≤ CK

ρ(x) ∧ 1

(
E|h(Xx

τ )|q
)1/q

where h(Xx
τ ) is defined as the limit of h(Xx

t ) on {τ = ∞}.

Reduction to the compact case. We first verify that the proof of Theorem 2
can be reduced to the case of a compact manifold M . We have to prove that
any point x0 of M has a neighbourhood, for instance a ball B0, on which the
estimate (2.9) holds. Let B1 be a ball which is slightly larger than B0, let τ1
be the exit time of R+ × (D ∩B1), and let ρ1 is the distance function to the
complement of D ∩B1. We have

E|h(Zt,x
τ )|q ≥ E|h(Zt,x

τ1
)|q and ρ(x) ∧ 1 ≤ C ρ1(x)

for x ∈ B0, where the first inequality holds because Ys = h(Zt,x
s ) is a martin-

gale up to time τ . We deduce that it is sufficient to prove the estimate (2.9)
for D ∩ B1 instead of D. The ball B1 can be embedded isometrically in a
compact manifold, so we can suppose that M is compact and take K = M .

Proof of Theorem 2 in the compact case. Like previously, it is sufficient to
consider the case t ≤ 1. Consider on R+ ×M the distance function

δ?((t, x), (t
′, x′)) = max

(δM(x, x′)

α
,
√
|t′ − t|

)
for the Riemannian distance δM on M , and where α > 1 is a constant which
will be chosen later. We also consider the function ρ?(t, x) which is the
distance to the complement of R+ ×D, so that

ρ?(t, x) =
ρ(x)

α
∧
√
t.
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Fix (t, x). For 0 < r < ρ2
?(t, x) ≤ 1, let

τ(r) = inf
{
s ≥ 0; δ?((t, x), Zs) ≥

√
r
}

= inf
{
s ≥ 0; δM(x,Xs) ≥ α

√
r
}
∧ r

By differentiating the martingale property of Ys = h(Zs), we verify that
Y ′

s = dh(Zs)Js is a local martingale up to time τ , where Js is the Jacobian of
Xx

s as in the proof of Theorem 1 (there is a small difficulty due to the time
τ , but the result can be proved with a time change on the diffusion outside
a compact subset of D, so that it does not quit D; this implies that Y ′

s is a
local martingale up to the exit time of the arbitrary compact subset). The
condition on r implies that τ(r) < τ , so

|Y ′
0 | ≤

1

r

∥∥∥∫ r

0

|Y ′
s∧τ(r)|ds

∥∥∥
1

≤ 1

r

∥∥∥∫ τ(r)

0

|Y ′
s |ds

∥∥∥
1
+

1

r

∥∥∥(r − τ(r))|Y ′
τ(r)|

∥∥∥
1

≤ 1√
r

∥∥∥(∫ τ(r)

0

|dh(Zs)|2ds
)1/2∥∥∥

q

∥∥∥ sup
0≤s≤r

|Js|
∥∥∥

q′

+ P[τ(r) < r]1/q′
∥∥∥Y ′

τ(r)

∥∥∥
q

if 1/q+1/q′ = 1. The moments of sups |Js| are finite, and the first Lq norm is
estimated as in Theorem 1 by means of the quadratic variation of Ys = h(Zs),
and therefore by

∥∥Yτ(r)

∥∥
q
≤

∥∥Yτ

∥∥
q
. In the second term, standard estimates

show that the probability of

{τ(r) < r} =
{

sup
s<r

δM(x,Xs) ≥ α
√
r
}

can be made arbitrarily small if α is chosen large enough. Thus we choose α
so that

|Y ′
0 | ≤

C√
r

∥∥Yτ

∥∥
q
+

1

4

∥∥Y ′
τ(r)

∥∥
q
. (2.10)

On the other hand
ρ?(Zτ(r)) ≥ ρ?(Z0)−

√
r,

so

ρ?(Z0)|Y ′
0 | ≤

C√
r
ρ?(Z0)

∥∥Yτ

∥∥
q

+
1

4

ρ?(Z0)

ρ?(Z0)−
√
r

∥∥∥ρ?(Zτ(r))Y
′
τ(r)

∥∥∥
q
.
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If we choose r = ρ2
?(Z0)/4, then we obtain

ρ?(Z0)|Y ′
0 | ≤ C

∥∥Yτ

∥∥
q
+

1

2

∥∥∥ρ?(Zτ(r))Y
′
τ(r)

∥∥∥
q
.

More generally, if now τ ′ is any optional time such that τ ′ < τ , the same
method enables to estimate ρ?(Zτ ′)|Y ′

τ ′|, and by taking the Lq norm, we show
that there exists an optional time τ ′ < τ ′′ < τ such that∥∥∥ρ?(Zτ ′)Y

′
τ ′

∥∥∥
q
≤ C

∥∥Yτ

∥∥
q
+

1

2

∥∥∥ρ?(Zτ ′′)Y
′
τ ′′

∥∥∥
q
.

By taking the supremum over all optional times which are less than τ , we
obtain

sup
τ ′

∥∥∥ρ?(Zτ ′)Y
′
τ ′

∥∥∥
q
≤ 2C

∥∥Yτ

∥∥
q
.

We deduce (2.9) by taking τ ′ = 0.

2.3 Uniform estimates in the non compact case

If M is not compact, we now wonder whether Theorem 1 holds, or whether
Theorem 2 holds for a constant CK = C which does not depend on K.
We first have to choose on M a Riemannian metric so that the diffusion is
uniformly elliptic, that is ∑

i

∣∣Ξif(x)
∣∣2 ≥ c

∣∣df(x)
∣∣2

for any smooth function f . Then, in order to work out the estimates of The-
orem 1, we first have to justify the exchange of the conditional expectation
and differentiation in (2.4); then we need the uniform boundedness of the
moments of sups≤1 |Js|; to this end, we have to choose a convenient represen-
tation (1.5) of the generator. For Theorem 2, we also have to verify that the
probability of {τ(r) < r} is uniformly small (for r ≤ 1) if α is chosen large
enough.

Example 2.1. If M = Rd, one can write the equation (2.1) as an It equation

dXt = b(Xt)dt+
∑

i

ξi(Xt)dW
i
t , X0 = x.

If the matrix ξξ? is bounded and uniformly elliptic and if moreover b and
the Jacobian matrices of b and ξi are bounded, then one can verify with the
above procedure that Theorems 1 and 2 hold uniformly.
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Example 2.2. Let M be a closed submanifold of an Euclidean space; suppose
that M is endowed with its induced Riemannian metric and L = ∆/2; then
the diffusion is uniformly elliptic. If we apply the method of Remark 2.2, then
Js is conveniently estimated as soon as the Ricci curvature of M is bounded
below; however, obtaining an intrinsic condition ensuring the justification
of (2.4) is not so easy, see chapters 6 and 10 of [25]. On the other hand,
the estimation of the exit time of small balls (more precisely of P[τ(r) < r])
can also be worked out when the Ricci curvature is bounded below with the
technique of [15], and we obtain (2.9) uniformly.

Example 2.3. Suppose that there exists a group G which acts transitively
on M , and that the diffusion is invariant under this action; this means that
(Xg.x

t ) and (g.Xx
t ) have the same law; an example is the Brownian motion

on an homogeneous space. Then it is clear that the estimation of dh(t, x) for
solutions h of (1.2) can be reduced to the estimation at a fixed x = x0, so
Theorem 2 holds uniformly, and Theorem 1 also holds.

3 Estimation for harmonic maps

Let us now consider the nonlinear semigroup Qt defined for N -valued maps
by (1.3) for a given connection on the manifold N . We suppose that Qtf is
well defined, and that (t, x) 7→ Qtf(x) is smooth for t > 0; in the elliptic
case, this holds under some convexity conditions on N , see [19, 2, 24] for
probabilistic proofs. We want to estimate d(Qtf) and prove an analogue of
(2.8). The stochastic interpretation of Qt is similar to Pt; the connection
enables to consider a notion of N -valued continuous martingale, and the
process Y x

s = Qt−sf(Xx
s ) is for any x a N -valued martingale, so Qtf(x) is

the initial value of the martingale with final value f(Xx
t ) (this martingale is

unique under the convexity assumptions). The aim of this section is to prove
the following result (see also the extension to the nonlinear heat equation at
the end of the section).

Theorem 3. Suppose that M is compact, that the diffusion is elliptic, and
that N is a relatively compact open subset of a manifold Ñ endowed with an
extension of the connection of N . We suppose that Ñ satisfies the following
convexity conditions; there exists a p ≥ 1, a Riemannian distance δ on Ñ
and nonnegative functions φ and ψ on Ñ × Ñ such that

φ(y0, y) = 0 ⇐⇒ ψ(y0, y) = 0 ⇐⇒ y0 = y

and
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1. The function φ is convex and φ(y0, y) ∼ δp(y0, y) as y → y0.

2. For any y0, the function y 7→ ψ(y0, y) is C2 and strictly convex (its
Hessian is positive definite).

Then, for any q > p, there exists a C such that

|d(Qtf)(x)| ≤ C√
t ∧ 1

E
[
δq(y0, f(Xt))

]1/q
(3.1)

for any y0 in N , any x in M , any t > 0 and any function f : M → N
such that the solution Qtf of (1.3) is well defined, N-valued, and smooth for
t > 0.

Remark 3.1. The manifold Ñ × Ñ is endowed with the product connection;
saying that φ is convex means that it is convex along the geodesic curves;
if U1

t and U2
t are N -valued martingales, this implies that φ(U1

t , U
2
t ) is a

submartingale. Notice also that the result (3.1) is stated for the distance

δ, but it also holds for other Riemannian distances on Ñ , since all these
distances are equivalent on N .

The convexity conditions of the theorem look stronger than the “p-conve-
xity” conditions used in [23, 1]. However, one can give basically the same
examples of manifolds N satisfying them.

Example 3.1. On any manifold endowed with a connection and for any p > 1,
any point has neighbourhoods N ⊂ Ñ satisfying the above conditions. The
function constructed in Proposition 2.5 of [2] can be proved to be a convenient
function φ for some distance δ, and one can take ψ = δ2.

Example 3.2. One can choose for N ⊂ Ñ regular geodesic balls in a Rieman-
nian manifold with distance δ0; this means that the sectional curvatures of
the manifold are bounded above by some κ ≥ 0, and that N ⊂ Ñ are balls
(for the distance δ0) with empty cut loci and with radii less than π/(2κ)
(there is no condition on the radii if κ = 0). In this situation, the existence
of φ has been obtained in [18] by generalizing the case of the sphere (notice
that δ is generally different from δ0); moreover, this function φ is strictly
convex outside the diagonal (one can also use the method of [23] to construct
φ, but one needs some extra work in order to obtain the strict convexity);

the value of p depends on the radius of Ñ . On the other hand, there exists
a c > 0 such that y 7→ δ2(y0, y) is strictly convex for φ(y0, y) ≤ c; then the
function

ψ = δ2 + β
(
(φ− c/2)+

)3

satisfies the convexity condition of Theorem 3 if β is chosen large enough.
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Example 3.3. If Ñ is a Cartan-Hadamard manifold with distance δ0 (a simply
connected Riemannian manifold with nonpositive sectional curvatures), then

any ball N ⊂ Ñ satisfies the conditions with p = 1, φ = δ = δ0 and ψ = δ2.
Moreover, the constants involved in the proof below do not depend on the
size of the ball, so the estimate holds for the whole (non compact) manifold
and the result of Theorem 3 becomes quite similar to the result (2.8) for the
real-valued case.

Proof of Theorem 3. As in Theorem 1, we suppose that Qtf is smooth for
t ≥ 0 (otherwise approximate f by Qεf) and we let t ≤ 1. Let us consider the
N -valued martingale Y x

s = Qt−sf(Xx
s ) and its derivative Y ′

s = d(Qt−sf)(Xs)
with respect to x; this is a process with values in the bundle L(TM, TN). Let
|Y ′

s | be its operator norm (associated to the Riemannian metrics δM and δ on
M and N). For any x and x′, the convexity of φ implies that φ(Y x

s , Y
x′
s ) is

a submartingale, so by dividing by δM(x, x′) and taking the limit as x′ → x,
we deduce that |Y ′

s |p is a submartingale. Thus

|Y ′
0 |p ≤

1

t
E

∫ t

0

|Y ′
s |pds.

Case p ≤ 2. In this case,

|Y ′
0 | ≤

1√
t

∥∥∥(∫ t

0

|Y ′
s |2ds

)1/2∥∥∥
p

≤ 1√
t

∥∥∥sup
s≤1

|Js|
∥∥∥

q′

∥∥∥(∫ t

0

∣∣d(Qt−sf)(Xs)
∣∣2ds)1/2∥∥∥

q

for q > p and 1/q + 1/q′ = 1/p. The last term can again be dominated by
means of the quadratic variation 〈〈Y 〉〉 of Ys (computed for instance for the
distance δ) so that

|Y ′
0 | ≤

C√
t

∥∥∥〈〈Y 〉〉1/2
t

∥∥∥
q
.

On the other hand, the derivatives of ψ are dominated by ψ1/2, and ψ
is strictly convex, so we can apply the Burkholder inequalities of [8] for
manifold-valued martingales to obtain

|Y ′
0 | ≤

C√
t

∥∥∥sup
s≤t

ψ(Y0, Ys)
1/2

∥∥∥
q
.

Since ψ � δ2 � φ2/p, we get

|Y ′
0 | ≤

C√
t

∥∥∥sup
s≤t

φ(Y0, Ys)
∥∥∥1/p

q/p
.
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Finally we can apply the Doob inequality to the submartingale φ(Y0, Ys) and
obtain

|Y ′
0 | ≤

C√
t

∥∥φ(Y0, Yt)
∥∥1/p

q/p
≤ C ′√

t

∥∥δ(Y0, Yt)
∥∥

q
.

Moreover∥∥δ(Y0, Yt)
∥∥

q
≤ δ(y0, Y0) +

∥∥δ(y0, Yt)
∥∥

q

≤ C
∣∣φ(y0, Y0)

∣∣1/p
+

∥∥δ(y0, Yt)
∥∥

q

≤ C
∥∥φ(y0, Yt)

∥∥1/p

q/p
+

∥∥δ(y0, Yt)
∥∥

q
≤ C ′

∥∥δ(y0, Yt)
∥∥

q
,

(3.2)

so the proof of the theorem is complete in the case p ≤ 2.

Case p > 2. In this case, we have

|Y ′
0 |p ≤

1

r
E

∫ r

0

|Y ′
s |pds

≤ 1

r
E

[
sup
s≤r

|Y ′
s |p−2

∫ r

0

|Y ′
s |2ds

]
≤ 1

r
E

[
sup
s≤r

|Y ′
s |p

]1−2/p

E
[(∫ r

0

|Y ′
s |2ds

)p/2]2/p

≤ C

r
E

[
sup
s≤r

|Y ′
s |p

]1−2/p

E
[
〈〈Y 〉〉q/2

r

]2/q

.

By applying the Doob inequality to the first term, and the Burkholder and
Doob inequalities to the second term (as in the case p ≤ 2), we obtain

|Y ′
0 |p ≤

C

r
E

[
|Y ′

r |q
](p−2)/q

E
[
δ(Y0, Yr)

q
]2/q

.

On the other hand, for any c > 0, there exists a C > 0 such that

xy ≤ c xp/(p−2) + C yp/2.

for positive x and y. By applying this property for c = 1/4, we get

|Y ′
0 | ≤

C

r1/p

∥∥Y ′
r

∥∥(p−2)/p

q

∥∥δ(Y0, Yr)
∥∥2/p

q

≤ 1

4
‖Y ′

r‖q +
C ′√
r

∥∥δ(Y0, Yr)
∥∥

q
. (3.3)

We have obtained an estimate for Y ′
0 ; for u < u+ r ≤ t, we deduce similarly

an estimate for Y ′
u, and by taking the Lq norm, we obtain

‖Y ′
u‖q ≤

1

4
‖Y ′

u+r‖q +
C√
r

∥∥δ(Yu, Yu+r)
∥∥

q
.
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Moreover, a technique similar to (3.2), based on the convexity of φ enables
to prove that ∥∥δ(Yu, Yu+r)

∥∥
q
≤ C

∥∥δ(y0, Yt)
∥∥

q
,

so

‖Y ′
u‖q ≤

1

4
‖Y ′

u+r‖q +
C√
r

∥∥δ(y0, Yt)
∥∥

q
.

By choosing r = 3
4
(t − u), we deduce that for any 0 ≤ u < t, there exists

u < s < t given by s = u+ r = u+ 3
4
(t− u) such that

√
t− u‖Y ′

u‖q ≤
1

2

√
t− s‖Y ′

s‖q + C
∥∥δ(y0, Yt)

∥∥
q
.

If we take the supremum with respect to u, we obtain

sup
0≤u<t

(√
t− u‖Y ′

u‖q

)
≤ 2C

∥∥δ(y0, Yt)
∥∥

q

and deduce the estimate (3.1) for d(Qtf)(x) = Y ′
0 .

If now h(t, x) is solution of the nonlinear heat equation ∂h/∂t = LNh on
R+×D, one can apply jointly the technique of Theorem 3 and the localization
procedure of Theorem 2. If for instance p > 2, one considers Ys = h(Zs),
Y ′

s = dh(Zs)Js, and |Y ′
s |p is a submartingale up to time τ ; by stopping the

processes at τ(r) one obtains

|Y ′
0 |p ≤

1

r
E

∫ τ(r)

0

|Y ′
s |pds+

1

r
E

[
(r − τ(r))|Y ′

τ(r)|p
]
.

The first term can be estimated as in (3.3), and since the probability of
{τ(r) < r} can be made small, the second term can be estimated by the
second term of (2.10). Thus we obtain

|Y ′
0 | ≤

1

4

∥∥Y ′
τ(r)

∥∥
q
+

1

4

∥∥Y ′
τ(r)

∥∥
q
+

C√
r

∥∥δ(y0, Yτ(r))
∥∥

q

Then we multiply by ρ?(Z0), and the study can be completed as in Section
2. The result is

|dh(t, x)| ≤ CK

1 ∧
√
t ∧ ρ(x)

E
[
δq(y0, h(Z

t,x
τ ))

]1/q
.
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4 The hypoelliptic case

Let us now consider the non elliptic case; as it has been explained in the
introduction (see also Remark 4.2 below), we cannot deal with the general
case, but have to restrict to the case where the tangent space is generated
by the C∞ vector fields Ξi and their commutators; a particular (non com-
pact) case is the classical Brownian motion on the Heisenberg group; it is a
three-dimensional process consisting of a two-dimensional standard Brown-
ian motion and of its Lvy area. Like previously, the following result is not
new in the real-valued case (it can be obtained with Malliavin’s calculus),
but the method can be extended to the manifold-valued case (this is sketched
at the end of the section). We do not try to prove precise estimates with the
Lq norm of f(Xt) as in previous sections, but only with the supremum ‖f‖∞
of |f |.
Theorem 4. Suppose that M is compact and that TxM is for any x ∈ M
generated by the vector fields Ξi and Ξij = [Ξi,Ξj] taken at point x. Then
there exists a C > 0 such that∣∣d(Ptf)(x)

∣∣ ≤ C

t ∧ 1
‖f‖∞

for any t > 0 and any bounded Borel function f .

Proof. We are going to prove the result for f smooth and t ≤ 1. We will
denote the vector fields Ξi and Ξij taken at x by ξi(x) and ξij(x) ∈ TxM (we
keep the upper case letters to denote the vector fields considered as acting
on functions). We consider the relation

d(Ptf)(x) =
2

t
E

∫ t/2

0

d(Pt−sf)(Xs)Jsds.

Our hypoellipticity condition implies that we can write the Jacobian Js taken
on some vector −→e ∈ TxM as

Js
−→e =

∑
i

ψi
sξi(Xs) +

∑
ij

ψij
s ξij(Xs). (4.1)

with |ψi
s|, |ψij

s | ≤ C |Js|; in particular the moments of ψi
s and ψij

s are bounded.
Thus

d(Ptf)(x)−→e =
2

t

∑
i

E
∫ t/2

0

Ξi(Pt−sf)(Xs)ψ
i
sds

+
2

t

∑
ij

E
∫ t/2

0

Ξij(Pt−sf)(Xs)ψ
ij
s ds.

(4.2)
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The first type of terms can be estimated by means of the quadratic variation
of the martingale Ys like previously, and is of order 1/

√
t; thus it is sufficient

to study the second type, and therefore to estimate Ξij(Ptf). To this end,
embed M into an Euclidean space, extend the vector fields Ξi to C∞ vector
fields with compact support, and write the equation for Xs in It’s form

Xs = x+

∫ s

0

b(Xu)du+
∑

k

∫ s

0

ξk(Xu)dW
k
u . (4.3)

Then
ξi(Xs) = ξi(x) +

∑
k

Ξkξi(x)W
k
s +O(s) (4.4)

in the spaces Lq for s small, and

ξi(Xs)W
j
s =

∫ s

0

ξi(Xu)dW
j
u +

∫ s

0

W j
udξi(Xu) + 〈ξi(X),W j〉s

= ξi(x)W
j
s +

∑
k

Ξkξi(x)
(∫ s

0

W k
u dW

j
u

+

∫ s

0

W j
udW

k
u

)
+ Ξjξi(x)s+O(s3/2). (4.5)

Now, for (i, j) fixed, let us apply an infinitesimal rotation on the Wiener
process (W j

s ,W
i
s), and an infinitesimal modification on the initial condition

in the direction tξij(x) (t is now a small positive parameter; it will be later
interpreted as a time parameter); this means that (W j

s ,W
i
s) is replaced by

(W j
s cos ε+W i

s sin ε,−W j
s sin ε+W i

s cos ε)

and that x is replaced by x + εtξij(x); we denote the perturbed process by
Xε

s . Then the differentiation of (4.3) shows that the derivative Vs of ε 7→ Xε
s

at ε = 0 is solution of

Vs = tξij(x) +

∫ s

0

(db)(Xu)Vudu+
∑

k

∫ s

0

(dξk)(Xu)VudW
k
u

+

∫ s

0

ξj(Xu)dW
i
u −

∫ s

0

ξi(Xu)dW
j
u .

(4.6)

This process is of order t+
√
s for s and t small, and

Vs = tξij(x) + ξj(x)W
i
s − ξi(x)W

j
s +O(t

√
s+ s).
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By applying this estimate to the terms Vu of (4.6), and by using also (4.4) ,
we obtain the more precise expansion

Vs = tξij(x) + ξj(x)W
i
s − ξi(x)W

j
s

+ Ξjξk(x)

∫ s

0

W i
udW

k
u − Ξiξk(x)

∫ s

0

W j
udW

k
u

+ Ξkξj(x)

∫ s

0

W k
u dW

i
u − Ξkξi(x)

∫ s

0

W k
u dW

j
u +O(t

√
s+ s3/2)

where the expressions involving k have to be summed. In this equation, the
vector fields are taken at x; we use (4.5) in order to give an approximate
expression of Vs as a linear combination of vector fields taken at Xs. By
using Ξkξj − Ξjξk = ξkj, we check after a calculation that

Vs = (t− s)ξij(Xs) + ξj(Xs)W
i
s − ξi(Xs)W

j
s

+ ξki(Xs)

∫ s

0

W j
udW

k
u − ξkj(Xs)

∫ s

0

W i
udW

k
u +O(t

√
s+ s3/2).

The law of Xs is sensible to the perturbation of the initial condition, but not
to the rotation of the Wiener process; this means that Xε

s is still a diffusion
with the same semigroup, so (Ps−uf)(Xε

u) is a martingale for any ε; after
differentiation, we deduce that d(Ps−uf)(Xu)Vu, 0 ≤ u ≤ s is a martingale
with initial value Ξij(Psf)(x)t. Thus

Ξij(Psf)(x) = E
[
df(Xs)Vs

] /
t

= E
[
(1− s/t)Ξijf(Xs) + Ξjf(Xs)W

i
s/t

− Ξif(Xs)W
j
s /t+ Ξkif(Xs)

∫ s

0

W j
udW

k
u /t (4.7)

− Ξkjf(Xs)

∫ s

0

W i
udW

k
u /t

]
+ E

[
O(
√
s+ s3/2/t)|df(Xs)|

]
.

We let now t be the time parameter, and we write

Ξij(Ptf) =
n

t

∫ t/n

0

Ξij(PsPt−sf)ds

for some integer n ≥ 2 which will be chosen later; we express the right hand
side by applying (4.7) with Pt−sf instead of f . Some of the terms can be
estimated; the term

n

t2

∫ t/n

0

Ξj(Pt−sf)(Xs)W
i
sds

≤ n

t2

(∫ t/n

0

∣∣Ξj(Pt−sf)(Xs)
∣∣2ds)1/2(∫ t/n

0

(W i
s)

2ds
)1/2
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can be estimated as in Theorem 1 by means of the quadratic variation of the
martingale Pt−sf(Xs) and is O(1/t)‖f‖∞. From our hypoellipticity assump-
tion, the derivative d(Pt−sf) can be expressed as a combination of Ξk(Pt−sf)
and of Ξkl(Pt−sf), and

n

t

∫ t/n

0

∣∣Ξk(Pt−sf)(Xs)
∣∣O(

√
s+ s3/2/t)ds = O(1) ‖f‖∞

by using again the quadratic variation. We obtain

Ξij(Ptf)(x) = E
[n
t

∫ t/n

0

(1− s

t
)Ξij(Pt−sf)(Xs)ds

+
n

t

∫ t/n

0

ΞK(Pt−sf)(Xs)
(GK

ij (Rs)

t
+O(

√
s)

)
ds

]
+O(1/t)‖f‖∞,

where the expression is summed over indices K = (k1, k2), where Rs consists
of the double integrals of the process Ws, and where GK

ij are linear forms.
Thus the vector Ξ(Ptf) = (ΞK(Ptf)) is solution of

Ξ(Ptf)(x) =
n

t
E

∫ t/n

0

(I − As)Ξ(Pt−sf)(Xs)ds+O(1/t)‖f‖∞

for a matrix-valued process As satisfying

As =
s

t
I − G(Rs)

t
+O(

√
s)

for a linear map G. The procedure can be iterated in order to express
Ξ(Pt−sf)(Xs), and we obtain

Ξ(Ptf)(x) =
n2

t2
E

∫ t/n

0

∫ 2t/n

t/n

(I − As1)(I − As1s2)Ξ(Pt−s2f)(Xs2)ds2ds1

+O(1/t)‖f‖∞

with

As1s2 =
s2 − s1

t
I − G(Rs1s2)

t
+O(

√
s2 − s1)

and where Rs1s2 consists of the double integrals of the increments of W on
[s1, s2]. After n iterations, we get

Ξ(Ptf)(x) =
nn

tn
E

∫ t/n

0

. . .

∫ t

(n−1)t/n

(I − As1) . . . (I − Asn−1sn)

Ξ(Pt−snf)(Xsn)dsn . . . ds1 +O(1/t)‖f‖∞.
(4.8)
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Consider now the process

As1s2 =
s2 − s1

t
I − G(Rs1s2)

t
.

The variable G(Rsi−1si
) is of order si − si−1, and its conditional expectation

given the process W up to time si−1 is 0. By applying classical techniques
(such as those which are used for the time discretization of stochastic differ-
ential equations), we can deduce that

(I − As1) . . . (I − Asn−1sn)

converges in the spaces Lq to e−1I as n → ∞, uniformly for (s1, . . . , sn) in
the integration domain of (4.8). Thus the L1 norm of the operator norm of
this variable is close to e−1 if n is chosen large enough; let us fix such an n.
Then, if t is small enough, we deduce that∥∥∥∣∣(I − As1) . . . (I − Asn−1sn)

∣∣∥∥∥
1
≤ 1/2 (4.9)

and therefore

|Ξ(Ptf)(x)| ≤ 1

2
sup
s≤t

‖Ξ(Psf)‖∞ +
C

t
‖f‖∞.

By using Pu = PtPu−t, this equation implies

‖Ξ(Puf)‖∞ ≤ 1

2
sup

u−t≤s≤u
‖Ξ(Psf)‖∞ +

C

t
‖f‖∞

for u ≥ t. Thus, if
F (t) = sup

t≤u≤1
‖Ξ(Puf)‖∞,

then

F (4t) ≤ 1

2
F (3t) +

C

t
‖f‖∞

for t ≤ 1/4, and therefore

sup
0≤t≤1/4

(
4tF (4t)

)
≤ 2

3
sup

0≤t≤1/3

(
3tF (3t)

)
+ 4C‖f‖∞.

Thus t F (t) is dominated by ‖f‖∞, and we conclude the proof from (4.2).
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Remark 4.1. Consider (4.2) with −→e = ξk(x); then the left hand side is
Ξk(Ptf)(x); moreover, an analysis of (4.1) shows that ψij

s is in this case
of order

√
s (notice that ψij

0 = 0). We can deduce that∣∣Ξk(Ptf)(x)
∣∣ ≤ C√

t ∧ 1
‖f‖∞.

Thus, as t ↓ 0, the Lipschitz coefficient of Ptf is of order 1/
√
t for the

intrinsic subriemannian distance of the diffusion on M , and it is of order 1/t
for Riemannian distances.

Remark 4.2. If now we consider the general hypoelliptic case, then we have
higher order brackets of (Ξi) in (4.2). As it has been said in the proof, the
vector fields Ξi can be estimated on Ptf by means of a quadratic variation;
roughly speaking, they can be interpreted as Cameron-Martin perturbations
on the driving Brownian motionWt. Then the vector fields Ξij were estimated
on Ptf by means of rotations on Wt. However, we have no other absolutely
continuous perturbation to estimate higher order brackets, so we think that
the method cannot be extended to more general hypoelliptic situations.

The localization (see the framework of Theorem 2) does not cause much
problem; we stop the processes at τ(r), and Ξh(t, x) is now expressed by
means of variables Asi−1∧τ(r),si∧τ(r); then we consider separately (like previ-
ously) the events {τ(r) = r} (on which we use the above estimations) and
{τ(r) < r} (which has small probability). We obtain∣∣Y ′

0

∣∣ ≤ C

r
‖h‖∞ +

1

4

∥∥Y ′
τ(r)

∥∥
q

with Y ′
s = Ξh(Zs). We multiply by ρ2

?(Z0) instead of ρ?(Z0), and proceed as
in Theorem 2. The result is∣∣dh(t, x)∣∣ ≤ CK

t ∧ ρ2(x) ∧ 1
‖h‖∞.

The extension to the manifold-valued case (framework of Theorem 3) can
also be worked out; the main difference is that the equality (4.7) should be
replaced by an inequality with an Lp norm; then the estimation (4.9) for the
L1 norm can also be done with the Lp norm, and we can prove∣∣dh(t, x)∣∣ ≤ CK

t ∧ ρ2(x) ∧ 1
sup
(z,z′)

δ(h(z), h(z′)).
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