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1 Introduction

Consider a partial differential equation (PDE) Lh = 0 on some open subset
D of IRd, where we suppose that L is a second order differential operator
associated to a continuous diffusion Xt. The classical Hörmander theorem
gives a condition under which L is hypoelliptic on D; this means that if h
is a solution of the PDE in distribution sense, then h is a C∞ function. In
particular, we can consider bounded functions h which are solutions in the
probabilistic sense as they were introduced in [19]; if τ is the first exit time
of D for the diffusion Xt, we require the process h(Xt) stopped at time τ to
be a martingale. Such a probabilistic solution will be said to be harmonic
on D, and it is C∞ under Hörmander’s condition. The aim of this work is
to extend the study of harmonic functions to some non local operators L
associated to Markov processes Xt with jumps.

Classical probabilistic proofs of Hörmander’s theorem [12, 4] are based on
the smoothness of the probability transition density y 7→ p(t, x, y) of Xt and
on estimates in small time. More precisely, the smoothness of p with respect
to y is obtained from the Malliavin calculus, and a duality method shows
that p is also smooth with respect to x; in particular, functions h which are
harmonic on the whole space IRd are smooth. Then estimates in small time
enable to localize the problem and prove the smoothness of functions which
are harmonic on D. If now L is a non local operator associated to a Markov
process with jumps, methods have been worked out in [3, 13, 15, 2, 16]
for proving the C∞ smoothness of the probability transition density; more
precisely we follow the framework of [16]. The general scheme for studying
harmonic functions is then similar to the continuous case, but the localization
is much more delicate; in order to obtain it, we will make more precise the
duality method, and in particular use the relation between non negative
excessive functions and excessive measures. With this method, it appears
that the smoothness of harmonic functions is directly related (as in the local
case) to estimates for the density in small time which themselves are related
to the number of jumps needed to quit D (see [17, 18] for some estimates). In
particular, the harmonic functions do not always inherit the C∞ smoothness
of the transition density; we obtain the Cj smoothness when the process
needs a large enough number of jumps to quit D, and we obtain the C∞

smoothness only when the process cannot quit D with jumps. However, we
also check that this assumption on the number of jumps can be removed
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under additional smoothness assumptions on L.

We will consider more generally functions h(t, x) which are solutions of
the heat equation ∂h/∂t = Lh on IR+×D; harmonic functions h(x) are then
a particular case.

In Section 2, we state the problem and the main result. We obtain some
preliminary estimates in small time in Section 3, and complete the proof of
the main result in Section 4. We derive some extensions in Section 5, and
consider the case of smooth jumps in Section 6.

2 The main result

We first introduce the class of Markov processes with jumps for which one
can apply the result of [16] for the existence of smooth densities and of
[18] for their behaviour in small time; other Malliavin calculus techniques
([3, 13, 15, 2]) can probably be also applied by modifying the subsequent
proofs. The advantage of the approach of [16] is that it can be applied to
singular Lévy measures. Thus, following [16], we suppose that the operator
L on IRd does not contain a second order part and that its Markov process
can be interpreted as the solution of an equation driven by a Lévy process.
We let

Lf(x) = f ′(x)b(x)

+
∫ (

f(x + γ(x, λ))− f(x)− f ′(x)γ0(x)λ1{|λ|≤1}
)
µ(dλ),

with the following assumptions.

Assumptions on µ. We suppose that µ(dλ) is a measure on IRm \ {0} which
integrates |λ|2 ∧ 1, and that there exists an index β ∈ (0, 2) such that

cρ2−βI ≤
∫

{|λ|≤ρ}
λλ?µ(dλ) ≤ Cρ2−βI (1)

as ρ → 0 (this is an inequality between symmetric matrices). This condition
can also be written as

cρ2−β ≤
∫

{|λ|≤ρ}
(λ.u)2µ(dλ) ≤ Cρ2−β
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for unit vectors u. If β ∈ (0, 1), we replace (1) by the stronger condition

cρ2−β ≤
∫

{|λ|≤ρ}
(λ.u)21{λ.u>0}µ(dλ) ≤ Cρ2−β (2)

for unit vectors u; if β = 1, we suppose in addition to (1) that

lim sup
ε→0

∣∣∣
∫

{ε<|λ|≤1}
λµ(dλ)

∣∣∣ < ∞. (3)

We associate to µ a m-dimensional Lévy process Λt with characteristic func-
tion given by the Lévy-Khintchine formula

IE[eiw.Λ1 ] = exp
∫

(eiw.λ − 1− iw.λ1{|λ|≤1})µ(dλ) (4)

(the measure µ is called the Lévy measure of Λt). We recall that

Λt −
∑

s≤t

1{|∆Λs|>1}∆Λs

is a martingale.

Remark. The assumption (1) implies that
∫

{|λ|≤1}
|λ|αµ(dλ) < ∞ (5)

for any α > β. This property will be important subsequently.

Remark. If µ is symmetric, then conditions (2) and (1) are equivalent, and
(3) is always satisfied.

Examples. Let µ be a measure satisfying the scaling property

µ(rB) = r−βµ(B) (6)

for r > 0; if Sm−1 is the unit sphere of IRm, the map x 7→ (|x|, x/|x|) enables
to identify IRm \ {0} and IR?

+ × Sm−1, and measures µ satisfying (6) can be
written as

µ(dr, dS) = r−1−βdr µ0(dS)

for a measure µ0 on Sm−1. Then
∫

{|λ|≤ρ}
λλ?µ(dλ) = ρ2−β

∫

{|λ|≤1}
λλ?µ(dλ),
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so the assumption (1) is satisfied as soon as µ is not supported by an hyper-
plane; if β ∈ (0, 1), the condition (2) is satisfied if µ is not supported by a
closed half space, and if β = 1, the condition (3) is satisfied if

∫

Sm−1
S µ0(dS) = 0.

The Lévy process Λt is then a β-stable process (plus possibly a drift). An
example of such a measure is the measure with density

µ(dλ)

dλ
= |λ|−m−β (7)

so that µ0 is a uniform measure on Sm−1; the Lévy process Λt is a rotation-
invariant β-stable process. Another example is to take for µ0 a purely atomic
measure

µ0 =
K∑

k=1

αkδSk
, αk > 0, Sk ∈ Sm−1, (8)

satisfying the above assumptions. The Lévy process is then the sum of K
independent β-stable processes Xk

t with values in the lines IRSk. One can
also consider the case where the scaling property (6) is not satisfied for all
r, but only for some geometric sequence, for instance ri = 2−i; then (1) (or
(2)) again holds as soon as µ is not supported by an hyperplane (or a closed
half space); this enables the study of purely atomic measures such as

µ =
K∑

k=1

∑

i∈ZZ

2iβδ2−iSk
. (9)

More details about the Lévy process associated to this measure in the case
m = K = 1 can be found in [17], where the behaviour in small time is
studied.

In view of these examples, the condition (1) can be viewed as an approxi-
mate scaling and non degeneracy condition. The additional conditions (2) or
(3) are required in [18] for the derivation of small time estimates; they imply
that the influence of the drift is negligible in the small time behaviour of the
semigroup associated to L.

Assumptions on the coefficients b, γ and γ0. We suppose that

γ(x, λ) = γ0(x)λ + O(|λ|α) (10)
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for some α > 1 ∨ β, as λ → 0, uniformly in x, that the coefficients b and
γ0 are C∞

b , that γ is C∞
b with respect to x uniformly in (x, λ), and that the

relation (10) also holds for the derivatives with respect to x. We also suppose
that the function x 7→ x + γ(x, λ) is invertible and that its inverse can be
written as x 7→ x + γ(x, λ) for a function γ which is C∞

b in x uniformly in
(x, λ) (notice that γ has a decomposition of type (10) with γ0 = −γ0). If
β ∈ (0, 1), then |λ| ∧ 1 is µ-integrable, and we suppose moreover that

b(x) = γ0(x)
∫

λ1{|λ|≤1}µ(dλ) (11)

so that
Lf(x) =

∫ (
f(x + γ(x, λ))− f(x)

)
µ(dλ).

The assumption (10) and the property (5) imply that Lf(x) is well defined
for any C2

b function f .

Notice that no smoothness assumption is made with respect to λ, except
as λ → 0. In particular, if µ is a singular measure, it is not possible to use
an integration by parts with respect to λ. However, in Section 6, we will see
what can be said when µ and the coefficients are smooth with respect to λ.

When the measure |λ|2µ(dλ) converges to the Dirac mass at 0, then the
operator L converges to a second order differential operator L0 with diffu-
sion coefficient γ0γ

?
0 ; in particular, the Hörmander theorem gives a condition

under which L0 is hypoelliptic. However, in this work, in order to apply
[16], we will not assume Hörmander’s condition on γ0, but a more restrictive
condition, namely the non degeneracy of γ0γ

?
0 . We want to prove the “hy-

poellipticity” of L, and more generally of L − ∂/∂t. However this will not
be a genuine hypoellipticity since the operator is not local and we will not
always obtain the C∞ smoothness.

We now give the probabilistic interpretation of the operator L. By using
the Lévy process Λt of (4), it is the generator of the process Xt = Xt(x)
solution of

Xt = x +
∫ t

0
b(Xs)ds +

∫ t

0
γ(Xs−, dΛs), (12)

where the stochastic integral is defined by

∫ t

0
γ(Xs−, dΛs) =

∫ t

0
γ0(Xs−)dΛs +

∑

s≤t

(
γ(Xs−, ∆Λs)− γ0(Xs−)∆Λs

)

6



and converges from (5) and (10). Our assumptions are sufficient to ensure the
existence and the uniqueness of a solution to (12) (Theorem IV.9.1 of [10]);
the smoothness of the coefficients and the invertibility of x 7→ x + γ(x, λ)
imply that x 7→ Xt(x) has a modification consisting in a stochastic flow of
diffeomorphisms ([8]). If β ∈ (0, 1), then Xt has finite variation, and the
additional condition (11) means that Xt is a pure jump process. Notice that
γ is supposed to be bounded, so the jumps of Xt are bounded.

Definition 1 Let D be an open subset of IRd and let

τ = τ(x) = inf
{
t ≥ 0; Xt(x) /∈ D

}

be the first exit time of D.

1. A locally bounded function h(x) defined on IRd is said to be harmonic
on D if the stopped process h(Xt∧τ ) is a local martingale for any initial
condition x ∈ D.

2. A locally bounded function h(t, x) defined on IR+ × IRd is said to be
solution of the heat equation ∂h/∂t = Lh on IR+ × D if the process
(h(r− t,Xt); 0 ≤ t ≤ r) stopped at time τ is a local martingale for any
r > 0 and any initial condition x ∈ D.

Notice that the local martingales involved in this definition are (up to a
negligible event) right continuous. This is because the process Xt is a strong
Markov process, see XVII.5 in [7]; the set of times where the martingale
differs from its right continuous modification is optional, and at any optional
time one can apply the strong Markov property.

Example. If one is given a bounded function φ on Dc, one can consider the
Dirichlet problem Lh = 0 in D, and h = φ in Dc. A bounded solution can
be constructed by

h(x) = IE[φ(Xτ )1{τ<∞}]

for Xt = Xt(x) and we obtain a bounded harmonic function. To see if the
solution is unique, one has to see if τ is finite with probability 1. The process
can quit D either with a jump, or continuously (X continuous at τ); in the
symmetric case, it is shown in [5] that this question can be translated in
terms of Dirichlet spaces. Notice that if it may quit with a jump, then the
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function φ should be defined on Dc and not only on ∂D as in the continuous
case. If D = IR? × IRd−1 and Xt is a Lévy process, then τ is the hitting time
of 0 by the real Lévy process X1

t ; one knows that this hitting time is finite
with positive probability in some situations such as β > 1 (this question is
related to the potential analysis of the process, see for instance [1]), and it
is finite with probability 1 if moreover X1

t is recurrent. This situation can
be extended to more general Markov processes Xt and more general sets D
such that Dc is an hypersurface, see [18]. Notice that a more analytic study
of the probabilistic Dirichlet problem can be found in [9].

Definition 2 Let A1 be the set of points (x, y) of IRd × IRd such that

µ
{
λ; |y − x− γ(x, λ)| ≤ ε

}
> 0

for any ε > 0. Let An be the set of points (x, y) for which there exists a chain
x = y0, y1, . . . , yn = y such that (yj, yj+1) is in A1. We also let An(x) be the
set of y such that (x, y) is in An. If y is in An(x), we say that y is accessible
from x (by the process Xt) in n jumps; similarly, if A and B are subsets of
IRd, we say that B is accessible from A in n jumps if A×B intersects An.

We deduce from (1) that 0 is an accumulation point of the support of µ,
so An is included in An+1. It follows from the smoothness of the coefficients
that An(x) and An are closed. We can now state the main result of this
work.

Theorem 1 Assume that γ0γ
?
0 is elliptic at any point. Let h be a locally

bounded function which is harmonic on an open set D, and let x0 ∈ D. For
any integer j, there exists an integer n depending only on j, the dimension d
and the scaling index β such that if Dc is not accessible from x0 in n jumps,
then h is Cj on a neighbourhood of x0.

Example. If D = (0,∞)× IRd−1 and if the jumps of the first component X1
t

of Xt are positive, then Dc is not accessible with any number of jumps, so we
can conclude that h is C∞ in D. Other cases may be more complicated; for
instance, if D = IR?×IRd−1 and if the jumps of X1

t take their values in the set
of ±2i, i ∈ ZZ, each of them being possible with positive probability (see the
example (9), take for Sk, 1 ≤ k ≤ d, the canonical basis of IRd, Sd+k = −Sk
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and Xt = Λt), then the number of jumps which are needed to reach Dc is the
number of 1’s in the dyadic decomposition of the first component x1 of x; one
can say that h is smooth at points x such that x1 is not a dyadic number.

By putting h(t, x) = h(x), an harmonic function becomes a solution of
the heat equation, so Theorem 1 becomes a particular case of the following
result.

Theorem 2 Assume that γ0γ
?
0 is elliptic at any point and let D be an open

subset of IRd. Let h(t, x) be a locally bounded solution of the heat equation
∂h/∂t = Lh on IR+ ×D, and let x0 ∈ D. For any integer j, there exists an
integer n depending only on j, d and β such that if Dc is not accessible from
x0 with n jumps, then there exists a neighbourhood B0 of x0 such that h is
Cj on (0,∞)×B0.

Example. Let Xt(x) be real-valued and D = IR?; then one has to consider
the hitting time τ = τ(x) of 0 by Xt(x). Consider the function

h(t, x) = IP[τ(x) < t] (13)

defined on IR × IR; in particular h(t, x) = 0 for t ≤ 0. If Ft is the filtration
of Λt, one has

h(r − t,Xt(x)) = IP[τ(x) < r | Ft]

on {t ≤ τ(x)}, so h is solution of the heat equation on IR × D (and not
only on IR+ × D). Theorem 2 says that the smoothness of h is related to
the number of jumps needed to reach 0 from x; in particular, the function
t 7→ h(t, x) is Cj on IR if this number is large enough. On the other hand, in
the case β > 1, if 0 is accessible from x in a finite number of jumps and under
some other assumptions (see [18]), the function h(t, x) is of order tη as t ↓ 0
for some positive η = η(x). This implies that the function t 7→ h(t, x) is not
Cj for j ≥ η. This shows the importance of the assumption of inaccessibility.

The next two sections are devoted to the proof of Theorem 2. We have
assumed that the jumps are bounded (γ bounded), so the problem can be
reduced to the case where D is bounded; to this end, one intersects D with
a ball with large enough radius, so that the complement of this ball is not
accessible from x0 with n jumps (n is chosen from the proof of the theorem).
We also suppose in the proof that γ0γ

?
0 is uniformly elliptic and h is bounded.
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3 Estimates in small time

We first give a large deviation result for the law of Xt as t ↓ 0; this result
was proved in [17] in the case of real-valued Lévy processes, and we extend
it to our class of Markov processes.

Lemma 1 Fix n ≥ 0 and x0 ∈ IRd. Let Bn be a neighbourhood of An(x0).
Then

IP[Xt(x) /∈ Bn] ≤ C tn+1

for x in a neighbourhood of x0.

Proof. Let B′
n ⊂ Bn be another neighbourhood of An(x0), such that the

distance between B′
n and (Bn)c is ε > 0. We deduce from the smoothness

of the coefficients that B′
n contains An(x) for x in a neighbourhood of x0,

and we are going to prove the lemma for these x. Fix ρ > 0 (it will be
chosen small enough later), and consider for each t > 0 the decomposition
(depending on t)

Λs = Λ1
s + Λ2

s + Λ3
s, s ≤ t

into independent Lévy processes defined as follows; the process Λ1
s is the sum

of jumps ∆Λu, u ≤ s, such that |∆Λu| > ρ, and the process Λ2
s is the sum of

jumps such that ρt1/4 < |∆Λu| ≤ ρ. We denote by J1
s and J2

s the number of
jumps of Λ1 and Λ2 up to time s. Let X1

s = X1
s (x), s ≤ t be the step process

defined by
∆X1

s = γ(X1
s−, ∆Λ1

s), X1
0 = x.

The support of the law of X1
t (x) on {J1

t = n} is An(x), so the support on
{J1

t ≤ n} is also An(x), and it is therefore included in B′
n. Thus

IP[Xt(x) /∈ Bn] ≤ IP[|Xt −X1
t | ≥ ε] + IP[J1

t > n]. (14)

On the other hand,

Xs −X1
s =

∫ s

0
b(Xu)du +

∫ s

0
γ(Xu−, dΛ3

u) +
∑

u≤s

γ(Xu−, ∆Λ2
u)

+
∑

u≤s

(
γ(Xu−, ∆Λ1

u)− γ(X1
u−, ∆Λ1

u)
)
,
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so

|Xs −X1
s | ≤ C s +

∣∣∣
∫ s

0
γ(Xu−, dΛ3

u)
∣∣∣ + C

∑

u≤s

|∆Λ2
u|

+C
∑

u≤s

|Xu− −X1
u−|∆J1

u. (15)

The integral with respect to Λ3 is a semimartingale with bounded jumps,
and we look for its decomposition into a local martingale and a predictable
process with finite variation. We have

∫ s

0
γ(Xu−, dΛ3

u) =
∫ s

0
γ0(Xu−)dΛ3

u +
∑

u≤s

(
γ(Xu−, ∆Λ3

u)− γ0(Xu−)∆Λ3
u

)
.

The process

Λs −
∑

u≤s

1{|∆Λu|>1} ∆Λu = Λ3
s +

∑

u≤s

1{ρt1/4<|∆Λu|≤1} ∆Λu

is a local martingale, so we can deduce that

Ms = t−1/4
(∫ s

0
γ(Xu−, dΛ3

u)−
∫ s

0

∫

{|λ|≤ρt1/4}
(γ(Xu, λ)− γ0(Xu)λ)µ(dλ)du

+
∫ s

0

∫

{ρt1/4<|λ|≤1}
γ0(Xu)λµ(dλ)du

)

is a local martingale. If we estimate the two last integrals, we obtain

∣∣∣
∫ s

0

∫

{|λ|≤ρt1/4}
(γ(Xu, λ)− γ0(Xu)λ)µ(dλ)du

∣∣∣

≤ C s
∫

{|λ|≤ρt1/4}
|λ|αµ(dλ) ≤ C ′ s ≤ C ′ t,

and
∣∣∣
∫ s

0

∫

{ρt1/4<|λ|≤1}
γ0(Xu)λµ(dλ)du

∣∣∣

≤ C s
∫

{ρt1/4<|λ|≤1}
|λ|µ(dλ) ≤ C ′ s t−1/4 ≤ C ′ t3/4,

where the second inequality follows from the µ-integrability of (|λ|2 ∧ 1).
Thus ∣∣∣

∫ s

0
γ(Xu−, dΛ3

u)
∣∣∣ ≤ t1/4|Ms|+ C t3/4
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and (15) becomes

|Xs −X1
s | ≤ C t3/4 + t1/4|Ms|+ CρJ2

s + C
∑

u≤s

|Xu− −X1
u−|∆J1

u.

If one defines
Rs = sup

u≤s
|Xu −X1

u|

for s ≤ t, then

Rs ≤ C
(
t3/4 + t1/4 sup

u≤t
|Mu|+ ρJ2

t

)
+ C

∑

u≤s

Ru−∆J1
u.

We deduce that

|Xt −X1
t | ≤ Rt ≤ C

(
t3/4 + t1/4 sup

s≤t
|Ms|+ ρJ2

t

)
eC J1

t . (16)

The constant C does not depend on ρ, and we now choose ρ small enough so
that

C(2n + 1)ρ eC n ≤ ε/2, (17)

where ε was introduced in the beginning of the proof. The variable J1
t is a

Poisson variable with mean t µ(|λ| > ρ), so the probability that it is greater
than n is O(tn+1). Similarly, the Poisson variable J2

t has mean

t µ(ρt1/4 < |λ| ≤ ρ) = O(
√

t)

because |λ|2 ∧ 1 is µ integrable, so the probability that J2
t is greater than

2n + 1 is also O(tn+1). Thus (16) and (17) imply that

|Xt −X1
t | ≤ C

(
t3/4 + t1/4 sup

s≤t
|Ms|+ (2n + 1)ρ

)
eC n

≤ C
(
t3/4 + t1/4 sup

s≤t
|Ms|

)
eC n + ε/2 (18)

except on an event of probability O(tn+1). The jumps of each component
M i

s of Ms are bounded in absolute value by 1/2 if ρ is small enough, so the
process

E i
s = eM i

s
∏

u≤s

(1 + ∆M i
u)e

−∆M i
u
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is a positive local martingale and its expectation is therefore at most 1. Thus

IE[eM i
t/2] = IE

[
(E i

t )
1/2

∏

u≤t

(1 + ∆M i
u)
−1/2e∆M i

u/2
]

≤ IE
[∏

u≤t

(1 + ∆M i
u)
−1e∆M i

u

]1/2

≤ IE
[
exp(C [M i, M i]t)

]1/2

≤ IE
[
exp(C ′ t−1/2[Λ3, Λ3]t)

]1/2
.

The variable t−1/2[Λ3, Λ3]t is an infinitely divisible variable; its Lévy measure
has bounded support (uniformly as t → 0), and its expectation and vari-
ance are bounded; one can deduce from the Lévy-Khintchine formula that it
has bounded exponential moments. Thus eM i

t/2 has bounded expectation; in
particular, Mt has bounded moments, and also sups≤t |Ms| by Doob’s inequal-

ity; this variable is therefore less than t−1/8 except on an event of probability
O(tk) for any k. By using this estimate in (18), we obtain

|Xt −X1
t | ≤ C(t3/4 + t1/8)eC n + ε/2 < ε

for t small enough, expect on an event of probability O(tn+1). Thus, since
IP[J1

t > n] is O(tn+1), we can conclude from (14).

Lemma 2 The solution Xt(x) of (12) has a C∞ density y 7→ p(t, x, y) for
t > 0. Let p(0) = p and for k ≥ 1, denote by p(k) the vector consisting of
all the derivatives of order k with respect to y. For any k, there exists an
integer n satisfying the following property; if y0 is not accessible from x0 in
n jumps, then p(k)(t, x, y) converges to 0 as t ↓ 0 uniformly for (x, y) in a
neighbourhood of (x0, y0).

Remark. Estimates in small time for the density of Xt can be found in
[14, 11, 17, 18], but here we also need estimates on the derivatives of the
density.

Proof. We know from [16, 18] that Xt has a smooth density, and p(k)(t, x, y)
is uniformly dominated by t−(k+d)/β (Theorem 1 of [18]). On the other hand,
if φ is a smooth function with compact support in IRd, its Fourier transform
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φ̂ can be estimated by means of the L1 norm of φ or its derivatives; one has
for any j ≥ 0

|φ̂(u)| ≤ C |u|−j‖φ(j)‖1.

One deduces from the Fourier inversion formula that

|φ(k)(y)| ≤ C
∫
|u|k |φ̂(u)|du

≤ C ′‖φ‖1

∫

{|u|≤M}
|u|kdu + C ′‖φ(j)‖1

∫

{|u|>M}
|u|k−jdu

≤ C ′′Mk+d‖φ‖1 + C ′′M−1‖φ(j)‖1

where we have taken j = k + d + 1 in the last inequality. We apply this
relation by letting φ be the function y 7→ p(t, x, y) multiplied by a localization
function (a smooth function which is 1 in a neighbourhood of y0 and has a
compact support which is disjoint fromAn(x0)). The L1 norm of this function
is O(tn+1) from Lemma 1, the L1 norm of φ(j) is O(t−(j+d)/β), so we obtain

|p(k)(t, x, y)| ≤ C Mk+dtn+1 + C M−1t−(k+2d+1)/β

for (x, y) in a neighbourhood of (x0, y0). We choose M = t−i for i > (k +
2d + 1)/β, and then n > i(k + d)− 1 so that the lemma holds.

We now consider the process X t = X t(x) which is the process Xt killed
when it quits D; this means that X t = Xt on {t < τ}, and X t is a cemetery
point ∂ on {t ≥ τ}. This process has a transition density p(t, x, y).

Lemma 3 For any k, there exists an integer n satisfying the following prop-
erty.

1. If y0 is not accessible from {x0}∪Dc in n jumps, then y 7→ p(t, x, y) is
Ck

b , uniformly for t > 0 and (x, y) in a neighbourhood of (x0, y0).

2. If y0 is not accessible from Dc in n jumps, the same property holds for
t ≥ t0 > 0, x in D and y in a neighbourhood of y0.

Proof. We write

IE[f(X t)] = IE[f(Xt)1{t<τ}] = IE[f(Xt)]− IE[IE[f(Xt)|Fτ ]1{τ≤t}].
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If ν(x, ds, dz) is the law of (τ, Xτ ) on {τ < ∞}, we deduce from the strong
Markov property that

p(t, x, y) = p(t, x, y)−
∫ t

0

∫

Dc
p(t− s, z, y)ν(x, ds, dz).

Since the jumps are bounded, the integral with respect to z is actually on
a compact subset of Dc. One can then apply Lemma 2 to estimate the
derivatives with respect to y of this integral. The smoothness of p(t, x, y) is
obtained from Lemma 2 for the first statement of the lemma, and from [16]
for the second statement.

4 Proof of the main result

We consider a function h(t, x) which is a solution of the heat equation and
study its smoothness in order to prove Theorem 2. We first consider its
smoothness with respect to x. To this end, we have to reduce the problem
to a more tractable one.

Lemma 4 The problem can be reduced to the case where the Lebesgue mea-
sure is almost surely invariant by the stochastic flow x 7→ Xt(x); in particular
it is invariant by the semigroup of Xt.

Proof. Let Jt be the Jacobian determinant of x 7→ Xt(x). Differentiation of
(12) yields

dJt = B0(Xt)Jtdt + Jt−B1(Xt−, dΛt), J0 = 1,

where B0 is the divergence of b,

B1(x, λ) = det(I + γ′(x, λ))− 1

and γ′ is the derivative with respect to x. Let Ht be an independent real-
valued Lévy process with Lévy measure

|x|−1−β1{|x|≤1}

(this is a truncated β-stable process), let Vt = Vt(x, v) be the solution of

dVt = −B0(Xt)Vtdt− Vt−B2(Xt−, dΛt) + dHt, V0 = v, (19)
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with B2 = B1(1+B1)
−1, and consider the process X̃t(x, v) = (Xt(x), Vt(x, v))

which is the solution of an equation driven by the Lévy process (Λt, Ht); it
satisfies the assumptions of Section 2 (the non degeneracy comes from the
introduction of Ht). The Jacobian of the map (x, v) 7→ X̃t(x, v) is JtWt with

Wt(x, v) = ∂Vt(x, v) / ∂v.

The differentiation of (19) shows that Wt is solution of

dWt = −B0(Xt)Wtdt−Wt−B2(Xt−, dΛt), W0 = 1,

so by writing the equation satisfied by JtWt, we obtain JtWt = 1. Thus the
Lebesgue measure is invariant by the stochastic flow of X̃t. Moreover, the
function h(t, x, v) = h(t, x) is a solution of the heat equation for the process
X̃t.

In Section 3, we have studied the smoothness with respect to y of the
density p(t, x, y). We actually need the smoothness with respect to x, and as
it has been said in the introduction, this will be made with a duality method
that we now describe.

Let X?
t = X?

t (x) be the solution of

dX?
t = −b(X?

t )dt + γ(X?
t−, dΛt), X?

0 = x,

where we recall that x 7→ x + γ(x, λ) is the inverse of x 7→ x + γ(x, λ).
Let C = C(IRd, IRd) be the space of continuous functions from IRd into itself,
endowed with the topology of uniform convergence on compact subsets. Then
Xt and X?

t can be viewed as C-valued variables, and if X−1
t is the inverse of

Xt, we have the following result.

Lemma 5 The variables X?
t and X−1

t have the same law.

Proof. This result will be proved by approximating Xt by processes with
finitely many jumps, so let us first suppose that the Lévy measure µ is finite.
Then (12) can be written as

Xt = x +
∫ t

0
b0(Xs)ds +

∑

s≤t

γ(Xs−, ∆Λs)
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with
b0(x) = b(x)− γ0(x)

∫

{|λ|≤1}
λµ(dλ).

Fix t, let J be the number of jumps of Λ before t, and let (Tj; 1 ≤ j ≤ J)
be the times of the jumps. Then x 7→ Xt(x) can be written as

Xt = φt−TJ
◦ ψ(∆ΛTJ

) ◦ φTJ−TJ−1
◦ . . . ◦ φT2−T1 ◦ ψ(∆ΛT1) ◦ φT1

where φt is the flow of the equation ẋt = b0(xt), and ψ(λ) is the map x 7→
x + γ(x, λ). Thus

X−1
t = φ−1

T1
◦ ψ(∆ΛT1)

−1 ◦ φ−1
T2−T1

◦ . . . ◦ ψ(∆ΛTJ
)−1 ◦ φ−1

t−TJ
.

Notice that φ−1
t is the flow of ẋt = −b0(xt) and that ψ(λ)−1 is the map

x 7→ x + γ(x, λ). Moreover

(J, T1, ∆ΛT1 , T2 − T1, ∆ΛT2 , . . . , TJ − TJ−1, ∆ΛTJ
, t− TJ)

and
(J, t− TJ , ∆ΛTJ

, . . . , T3 − T2, ∆ΛT2 , T2 − T1, ∆ΛT1 , T1)

have the same law. Thus X−1
t has the law of a variable which looks like Xt,

but with b0 and γ replaced by −b0 and γ; this is exactly X?
t . The general

case (when µ is infinite) is obtained by approximating the Lévy process Λt

by ∑

s≤t

1{|∆Λs|>ρ}∆Λs − t
∫

{ρ<|λ|≤1}
λ µ(dλ)

which has finitely many jumps for ρ > 0. We obtain the solutions Xρ
t and

(Xρ
t )? of the corresponding equations, and we now know that (Xρ

t )? and
(Xρ

t )−1 have the same law. In order to take the limit as ρ ↓ 0 in this property,
we apply the following deterministic result; if fn is a sequence of homeomor-
phisms of IRd, if fn and f−1

n converge respectively to limits f and g in C, then
f and g are homeomorphisms and g = f−1. Here, the uniform estimates

IE
[
|Xρ

t (x)−Xρ
t (y)|p

]
≤ Cp|y − x|p,

which can be deduced from the techniques of [2, 8], show that the law of
(Xρ

t ; ρ > 0) is tight in C. Similarly, the law of (Xρ
t )?, and therefore of

(Xρ
t )−1, is tight. Thus the law of the couple (Xρ

t , (Xρ
t )−1) is tight, and the

above deterministic result shows that if (Ξ1, Ξ2) is any limit, then Ξ1 and
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Ξ2 are almost surely homeomorphisms, and Ξ2 = Ξ−1
1 . On the other hand,

one can deduce from the results of Section 5 of [2] that Xρ
t (x) converges in

probability to Xt(x) as ρ ↓ 0, for any x. Thus the limit Ξ1 is Xt, and (Xρ
t )−1

converges in law to X−1
t ; similarly, the variable (Xρ

t )?, which has the same
law, converges to X?

t , so X−1
t and X?

t have the same law.

By applying Lemma 5 and the reduction of Lemma 4, a change of variables
shows that

IE
∫

f1(x)f2(Xt(x))dx = IE
∫

f2(x)f1(X
?
t (x))dx.

This means that the semigroups of Xt and X?
t are in duality with respect

to the Lebesgue measure. As a consequence ([7]), if we consider the law of
the process (Xt) with marginal law the Lebesgue measure, then the right
continuous modification of its time reversal has the law of the process (X?

t ).
Similarly, the processes

Zt(s, x) = (s− t,Xt(x)), Z?
t (s, x) = (s + t,X?

t (x))

are in duality with respect to the Lebesgue measure on IRd+1. For r > 0
fixed, let σ = σ(s, x) and σ? = σ?(s, x) be the exit times of (0, r) × D for
the processes Zt and Z?

t . Denote by Zt and Z
?
t the corresponding killed

processes; they are also in duality with respect to the Lebesgue measure on
(0, r)×D.

Let us go back to the solution h(t, x) of the heat equation; it is supposed
to be bounded, so by adding a constant, we can also suppose that it is non
negative. We are going to use the duality between non negative excessive
functions of Zt and excessive measures of Z

?
t . The process h(Zt) is a non

negative martingale up to σ, so the killed process h(Zt) is a right continuous
supermartingale; this means that the function h is excessive for the process
(Zt). Let ν be the measure

ν(dt, dx) = 1(0,r)(t)1D(x)h(t, x)dt dx. (20)

The fact that h is excessive for (Zt) implies that ν is excessive for (Z
?
t ) (see

XII.71 of [6]); this can be viewed from
∫

IE[f(Z
?
t (z))]ν(dz) =

∫
IE[f(Z

?
t (z))h(Z

?
0(z))]dz

=
∫

IE[f(Z0(z))h(Zt(z))]dz

≤
∫

(0,r)×D
f(z)h(z)dz =

∫
f(z)ν(dz)
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for f non negative. The process Z
?
t has no non trivial invariant measure (the

lifetime is bounded), so ν is purely excessive and is therefore the increasing
limit of potentials (XII.38 of [6]). We now want to reduce the study of ν to
the study of a potential; to this end, we need the following result.

Lemma 6 Let K be a compact subset of (0, r) × D. Then the function a
defined by a(z) = IE[σ?(z)] is bounded below by a positive constant on K.

Proof. For any (s, x) ∈ K, we have

a(s, x) ≥ θIP
[

sup
0<t<θ

|X?
t (x)− x| < δ

]

where θ and δ are less than the distance between K and the complement of
(0, r) × D. We fix δ and use the Doob-Meyer decomposition X?

t (x) − x =
V x

t +Mx
t into a predictable process with finite variation and a martingale, so

V x
t = −

∫ t

0
b(X?

s )ds +
∫ t

0

∫ (
γ(X?

s , λ) + γ0(X
?
s )λ1{|λ|≤1}

)
µ(dλ)ds.

Then
∫ θ
0 |dV x

t | is bounded by δ/2 if θ is small enough, so

a(s, x) ≥ θIP
[

sup
0<t<θ

|Mx
t | < δ/2

]
≥ θ(1− c′IE|Mx

θ |2)

for θ small, by applying the Doob inequality. Since the predictable com-
pensator 〈Mx,Mx〉θ of the quadratic variation of Mx is dominated by θ, we
deduce

a(s, x) ≥ θ(1− c′′θ)

so the lemma is proved by choosing θ small enough.

Lemma 7 Let K be a compact subset of (0, r)×D. Then the measure ν of
(20) coincides on K with the potential for (Z

?
t ) of a finite measure ξ on K.

Proof. The measure ν is the increasing limit of potentials νj of measures ξj

on (0, r)×D. We have

∫
f(z)νj(dz) = IE

∫ ∞

0

∫
f(Z

?
t (z))ξj(dz)dt.
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If f is non negative and if τ(K) is the entrance time in K, then
∫

f(z)νj(dz) ≥ IE
∫ ∞

τ(K)

∫
f(Z

?
t (z))ξj(dz)dt = IE

∫ ∞

0

∫
f(Z

?
t (z))ξj(dz)dt

(21)
where ξj is the law of Z

?
τ(K) when the initial law is ξj; in particular, ξj is

supported by K. Thus, if νj is the potential of ξj, then νj ≥ νj. If f is
supported by K, then the inequality (21) becomes an equality, so νj = νj on
K. Then ∫

ν(dz) ≥
∫

νj(dz) =
∫

a(z)ξj(dz) ≥ c ξj(K)

from Lemma 6. Recall that the problem has been reduced to the case where
D is bounded, so ν is finite. Thus ξj is bounded and has a converging
subsequence for the weak topology. Its limit ξ is a finite measure on K; if ν
is its potential, then ν is the limit of νj, and ν = ν on K.

We now see that the measure ξ cannot have mass everywhere. We fix x0

in D and consider an open neighbourhood B0; let Bn be the set of y such
that (x, y) ∈ An for some x ∈ B0; they are open sets. The assumption of
Theorem 2 saying that Dc is not accessible from x0 in n jumps implies that
Bn is relatively compact in D if B0 is chosen small enough. Thus we can
choose K of the form

K = [r/3, 2r/3]×K

where K is a compact subset of IRd, K0 is its interior, and

Bn ⊂ K0 ⊂ K ⊂ D.

Lemma 8 Let K satisfy the above condition. Then the measure ν coin-
cides on K with the potential for (Z

?
t ) of a finite measure ξ on K satisfying

ξ((r/3, 2r/3)×Bn−1) = 0.

Proof. Let f be the indicator of B′
n−1 = (r/3, 2r/3) × Bn−1 and let K0 be

the interior of K; if the measure ξ of Lemma 7 satisfies ξ(B′
n−1) > 0, then

IE
∫

f(Z
?
0(z))ξ(dz) = ξ(B′

n−1) > 0,

so, by right lower semicontinuity (because B′
n−1 is open),

IE
∫

f(Z
?
s(z))ξ(dz) ≥ c
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for s small. Thus

IE
∫ ∞

0

∫
f(Z

?
s(z))ξ(dz)ds ≥ IE

∫ ∞

t

∫
f(Z

?
s(z))ξ(dz)ds + c t

≥ IE
∫ ∞

t

∫
1K0(Z

?
t (z))f(Z

?
s(z))ξ(dz)ds + c t

for t small. This can be written as

ν(B′
n−1) ≥

∫

K0
IE[f(Z

?
t (z))]ν(dz) + c t

=
∫

IE
[
f(Z

?
t (z))(h 1K0)(Z

?
0(z))

]
dz + c t

=
∫

IE
[
f(Z0(z))(h 1K0)(Zt(z))

]
dz + c t

≥
∫

B′n−1

IE[h(Z̃t(z))]dz + c t (22)

where Z̃t(z) is the process Zt(z) killed at the first exit time σ0 of K0. On the
other hand, h is solution of the heat equation, so h(z) is the expectation of
h(Zt∧σ0) for Zt = Zt(z), and

IE[h(Z̃t)] = IE[h(Zt)1{t<σ0}] = h(z)− IE[h(Zσ0)1{σ0≤t}]

for z ∈ K0. By using this equality in (22), we obtain the second inequality
in ∫

B′n−1

IP[σ0(z) ≤ t]dz ≥ c
∫

B′n−1

IE[h(Zσ0)1{σ0≤t}]dz ≥ c′ t.

If τ0 = τ0(x) is the first exit time of K0 for the process Xt(x), we deduce
∫

Bn−1

IP[τ0(x) ≤ t]dx ≥ c t.

The process Xt(x) cannot jump from Bn−1 into (K0)c, so the left hand side
is O(t2) from Lemma 1. Our assumption ξ(B′

n−1) > 0 is therefore false.

Lemma 9 The statement of Theorem 2 holds true for the smoothness with
respect to x. In particular, Theorem 1 holds true.

Proof. We are going to apply the result of Lemma 3 to X?
t instead of Xt. No-

tice that the set A?
n of Definition 2 corresponding to this process is symmetric

to An, so that
A?

n =
{
(x, y); (y, x) ∈ An

}
.
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The process X
?
t has a transition density x 7→ p?(t, y, x) = p(t, x, y); let us

extend this function by 0 for t < 0. Thus the potential for Z
?
t of a mass at

(s, y) has density (t, x) 7→ p?(t − s, y, x), and Lemma 7 says that h is equal
almost everywhere on K to

h1(t, x) =
∫

K
p?(t− s, y, x)ξ(ds, dy)

In the integral, Lemma 8 says that (s, y) is outside (r/3, 2r/3)×Bn−1; thus,
if t is in a neighbourhood Tr of r/2, we can decompose this integral into an
integral for which t−s is bounded below, and an integral for which y /∈ Bn−1.
If x is in B0, the process Xt cannot go from x to Dc in n jumps, so X?

t cannot
go from Dc to x in n jumps; similarly, if y /∈ Bn−1, the process X?

t cannot
go from y to x in n− 1 jumps. Thus we can apply the two parts of Lemma
3 to the two parts of the integral, and deduce that if n is large enough, then
h1 satisfies the required smoothness on Tr ×B0. We still have to prove that
h satisfies the same smoothness. One has

h(t, x) = lim
s↓0

h(t− s,Xs) = lim h1(t− sk, Xsk
)

almost surely along some sequence sk ↓ 0; it follows from the smoothness of
h1 with respect to x that

h(t, x) = lim h1(t− sk, x),

so h inherits the smoothness of h1 on Tr × B0. The choice of B0 does not
depend on r, so h is smooth on (0,∞)×B0.

Proof of Theorem 2. We have to study the smoothness of h(t, x) with respect
to t. Like previously, we consider a neighbourhood B0 of x0, the set Bn of
points accessible in n jumps from B0, and suppose that Bn is relatively
compact in D. Lemma 9 says that h is Cj with respect to x ∈ B0 if n is
large enough. Actually, if BN is relatively compact in D for some N ≥ n, the
method shows that the smoothness holds for x ∈ BN−n. On the other hand,
by applying the heat equation, we obtain on [t0,∞)×BN−n the estimate

h(t, x) = IE[h(t− (s ∧ τ), Xs∧τ )] = IE[h(t− s,Xs)] + O(sn+1)

as s ↓ 0, because IP[τ < s] is O(sn+1)(Lemma 1). From the smoothness of h
with respect to x and Ito’s formula, we get

h(t, x) = h(t− s, x) + Lh(t− s, x)s + o(s),
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and this estimate is uniform. We deduce that h is differentiable with respect
to t and its derivative is Lh. We also notice that h(t, x)− h(t− s, x) is, for s
fixed, a solution of the heat equation; by taking the limit in the martingale
property, we prove that ∂h/∂t = Lh is also a bounded solution of the heat
equation on [t0,∞) × BN−n. Let t1 > t0, let B′

0 be an open neigbourhood
of x0 which is relatively compact in B0, and let B′

n be the corresponding
sets of accessible points. If N ≥ 2n, we can iterate the procedure and prove
that ∂h/∂t is Cj with respect to x and differentiable with respect to t on
[t1,∞)×B′

N−2n. Thus we can obtain any order of smoothness.

5 Extensions

In this section, we derive two extensions of the main result. First, we consider
a wider class of operators L. In the continuous case, it is well known that
one can consider the heat equation with a potential (a term of order 0 in
L); this is also possible here. Moreover, contrary to the continuous case, the
class of processes Xt is not stable with respect to Girsanov transforms, so
applying Girsanov transforms enables to obtain a richer class of operators L.
The new class consists of operators

Lf(x) = f ′(x)b(x) + g(x)f(x) (23)

+
∫ (

f(x + γ(x, λ))− f(x)− f ′(x)γ(x, λ)
)
ψ(x, λ)µ(dλ)

when β ≥ 1, and

Lf(x) = g(x)f(x) +
∫ (

f(x + γ(x, λ))− f(x)
)
ψ(x, λ)µ(dλ) (24)

when β < 1 ((24) is obtained from (23) by taking a particular b). The
measure µ and the coefficients b and γ satisfy the assumptions of Section 2,
and the new coefficients satisfy the following conditions.

Assumptions on g and ψ. We suppose that

ψ(x, λ) = 1 + ψ0(x)λ + O(|λ|α) (25)

for some α > 1 ∨ β, as λ → 0, uniformly in x, that the coefficients g and
ψ0 are C∞

b , that ψ is C∞
b with respect to x uniformly in (x, λ), and that the
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relation (25) also holds for the derivatives with respect to x. We also suppose
that ψ is bounded below by a positive constant.

We now give the probabilistic interpretation of the semigroup of L. To
this end, we write the operator L in the form

Lf(x) = L0f(x) + g(x)f(x) +
∫ (

f(x + γ(x, λ))− f(x)
)
ψ1(x, λ)µ(dλ)

with

L0f(x) = f ′(x)b0(x)

+
∫ (

f(x + γ(x, λ))− f(x)− f ′(x)γ0(x)λ1{|λ|≤1}
)
µ(dλ),

b0(x) = b(x) +
∫

(γ0(x)λ1{|λ|≤1} − γ(x, λ)ψ(x, λ))µ(dλ),

ψ1(x, λ) = ψ(x, λ)− 1.

The operator L0 is the generator of the process Xt solution of

dXt = b0(Xt)dt + γ(Xt−, dΛt)

to which we can apply previous results.

Lemma 10 The semigroup generated by L can be expressed as

PL
t f(x) = IEx[Γtf(Xt)],

where the process Γt = Γt(x) is solution of

dΓt = Γt−
(
g1(Xt)dt + ψ1(Xt−, dΛt)

)
, Γ0 = 1 (26)

with
g1(x) = g(x)−

∫
(ψ1(x, λ)− ψ0(x)λ1{|λ|≤1})µ(dλ).

Proof. We are looking for the predictable finite variation part in the Doob-
Meyer decomposition of f(Xt)Γt. We use the Ito formula

f(Xt)Γt = f(x) +
∫ t

0
f(Xs−)dΓs +

∫ t

0
Γs−df(Xs) +

∑

s≤t

∆Γs ∆f(Xs),
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where

∆Γs ∆f(Xs) = Γs−ψ1(Xs−, ∆Λs)
(
f(Xs− + γ(Xs−, ∆Λs))− f(Xs−)

)
.

The predictable finite variation parts of the processes f(Xt) and Γt are respec-
tively

∫ t
0 L0f(Xs)ds and

∫ t
0 Γsg(Xs)ds. Thus the predictable finite variation

part of f(Xt)Γt is
∫ t

0
ΓsL0f(Xs)ds +

∫ t

0
Γsg(Xs)f(Xs)ds

+
∫ t

0
Γs

∫
ψ1(Xs, λ)(f(Xs + γ(Xs, λ))− f(Xs))µ(dλ)

=
∫ t

0
ΓsLf(Xs)ds.

We can verify that the local martingale is a martingale for f ∈ C2
b , so

IE[f(Xt)Γt] = f(x) +
∫ t

0
IE[Lf(Xs)Γs]ds.

This proves the lemma.

From Lemma 10, we can say that the function h(t, x) is a solution of the
heat equation for the operator L on IR+ × D if for any r > 0, the process
h(r − t,Xt)Γt, 0 ≤ t ≤ r, is a local martingale up to the exit time of D.

Corollary 1 Under the above assumptions, the result of Theorem 2 holds
true for the operator L of (23) or (24).

Proof. Let Ht be an independent truncated β-stable process as in the proof
of Lemma 4, choose η so that exp(Ht − ηt) is a martingale, and define

Vt(x, v) = v + Ht − ηt + log Γt(x).

Then from the equation (26) of Γt,

Vt = v + Ht − ηt +
∫ t

0
g1(Xs)ds +

∫ t

0
log ψ(Xs−, dΛs).

The process X̃t(x, v) = (Xt(x), Vt(x, v)) is the solution of an equation driven
by the Lévy process (Λt, Ht); moreover, it satisfies the previous assumptions.
If h(t, x, v) = h(t, x)ev, then

h(r − t,Xt, Vt) = h(r − t,Xt)Γt exp(v + Ht − ηt).
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We deduce that the function h is a solution of the heat equation for the
generator of X̃t; we can apply Theorem 2, and obtain the smoothness of h,
and therefore of h.

In the second extension, we consider locally bounded solutions of

(L− ∂/∂t)h = ` (27)

on [0, r]×D for smooth functions ` and the operator L of (23) or (24). This
means that the process

Mh
t (s, x) = h(s− t,Xt(x))Γt(x)−

∫ t

0
`(s− u,Xu(x))Γu(x)du, 0 ≤ t ≤ s

is for any (s, x) a local martingale up to the first exit time of D for the
process Xt(x).

Corollary 2 If ` is a C∞ function, the smoothness result of Theorem 2 holds
for solutions of (27).

Proof. Since the problem is linear, solutions of (27) can be deduced from
solutions of the homogenous equation (the heat equation), and from one
particular solution of the non homogenous PDE; such a particular solution
is given by the resolvent applied to `. The probabilistic interpretation of
this method can be described as follows. As in Corollary 1, we reduce the
problem to the case where L is the operator of Section 2 (so that Γt = 1);
we localize the problem and suppose that ` is C∞

b . If Ft is the filtration of
Λt, we define

M
h
t (s, x) = Mh

t (s, x) + IE
[∫ s

0
`(s− u, Xu(x))du

∣∣∣ Ft

]
.

The martingale properties for Mh
t and M

h
t are equivalent. On the other hand,

from the smoothness x 7→ Xt(x), the function

φ(s, x) = IE
∫ s

0
`(s− t,Xt(x))dt

can be proved to be smooth, and one has

M
h
t (s, x) = (h + φ)(s− t,Xt(x)).

This is a martingale, so h+φ is a solution of the heat equation and Theorem
2 implies that h + φ is smooth; thus h is smooth.
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6 The case of processes with smooth jumps

Up to now, we have proved the C∞ smoothness of h only at points from which
the process cannot quit D with a finite number of jumps. Here, we prove that
this condition can be removed under additional smoothness assumptions on µ
and γ, but only in the framework of Theorem 1 (a counterexample concerning
the heat equation of Theorem 2 has been given in (13)). We will denote by
γ′λ the Jacobian matrix of γ(x, λ) with respect to λ; in particular

γ0(x) = γ′λ(x, 0).

Theorem 3 Consider the operator L with the conditions on µ and the coef-
ficients as in Section 2 or 5; suppose moreover that µ has a bounded support
and has a density which is C∞ on IRm \ {0}, that γ(x, λ) is C∞ with respect
to (x, λ) ∈ IRd × IRm, and that γ′λγ

′
λ

? is elliptic. If `(x) is C∞, then any
solution h(x) of Lh = ` in D is C∞ on D.

Example. This theorem can for instance be applied when Λt is the rotation-
invariant β-stable Lévy process with Lévy measure defined in (7). Notice that
the assumption of smoothness of µ excludes the example (8), for instance the
case where the components of the Lévy process are independent.

Proof. Fix some integer j; we want to prove that h is Cj on D. For ε > 0
fixed (which will be chosen small enough), one writes the Lévy measure as
µ = µ1 + µ2, where µ2 is supported by {|λ| ≤ ε}, and µ1(dλ) = ρ1(λ)dλ
for a density ρ1 which is C∞ on IRm; this is associated to a decomposition
Λt = Λ1

t + Λ2
t where Λi

t has Lévy measure µi, and Λ1
t is of pure jump type

(it is the sum of its jumps) and has finitely many jumps. By proceeding
as in Section 5, we reduce the problem to the case where L is the operator
of Section 2 and ` = 0; we can choose D bounded and the function h is a
bounded harmonic function. Let τ1 be the first jump of Λ1

t , let X2
t be the

solution of the equation (12) with Λt replaced by Λ2
t and let τ2 be the first

exit time of D for X2
t . Then τ1 is an exponential variable with parameter

c = µ1(IR
m), the variable ∆Λτ1 has law µ1(dλ)/µ1(IR

m) and (τ1, ∆Λτ1 , X
2)

are independent. For Xt = Xt(x), one has

h(x) = IE[h(Xτ1∧τ2)]

= IE[h(Xτ2)1{τ2<τ1}] + IE[h(Xτ1)1{τ1≤τ2}]
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= IE[h(X2
τ2

)1{τ2<τ1}] + IE[h(X2
τ1

+ γ(X2
τ1

, ∆Λτ1))1{τ1≤τ2}]

= IE[h(X2
τ2

)e−cτ2 ] +
∫ ∫

IE[h(X2
t + γ(X2

t , λ))1{t≤τ2}]e
−ctρ1(λ)dt dλ

= h1(x)− h2(x) + h3(x)

with
h1(x) = IE[h(X2

τ2
)e−cτ2 ],

h2(x) =
∫ ∫

IE[h(X2
t + γ(X2

t , λ))1{τ2<t}]e
−ctρ1(λ)dt dλ,

h3(x) =
∫ ∫

IE[h(X2
t + γ(X2

t , λ))]e−ctρ1(λ)dt dλ.

The process Λ2 has jumps bounded by ε, so if one fixes x in D and by choosing
ε small enough, X2 needs an arbitrarily large number of jumps to reach Dc

from x; if L2 denotes the generator of X2, then h1 is solution of L2h1−ch1 = 0
in D, so from Corollary 1, the function h1 is Cj in a neighbourhood of x for
ε small enough. The function h2 can be written in the form

h2(x) = IE[φ(τ2, X
2
τ2

)]

with φ(t, x) = h3(x) exp(−ct); thus h2(x) = h2(0, x) with

h2(t, x) = IE[φ(τ2 − t,X2
τ2

)].

This is a solution of the heat equation ∂h2/∂t = L2h2 on IR × D, so from
Theorem 2, h2 is also Cj in a neighbourhood of x for ε small enough. For h3,
we fix some T > 0 and decompose the integral with respect to t into integrals
on [0, T ] and [T,∞); we obtain h3 = h4 + h5 with

h4(x) = e−cT IE[h3(X
2
T )]

and h5 consists of the integral on [0, T ]. The smoothness of h4 is again
obtained by applying Theorem 2. For h5, we write it as h5 = T h with

T f(x) =
∫ ∫ T

0
IE[f(X2

t + γ(X2
t , λ))]e−ctρ1(λ)dt dλ.

The stochastic flow x 7→ X2
t (x) is smooth, so if f is C∞ with compact

support, then we can differentiate with respect to the ith component of x
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and obtain

∇i(T f)(x) =
∫ ∫ T

0
IE[f ′(X2

t + γ(X2
t , λ))(I + γ′x(X

2
t , λ))∇iX

2
t ]

e−ctρ1(λ)dλ dt

=
∫ ∫ T

0
IE

[
∂

∂λ

[
f(X2

t + γ(X2
t , λ))

](
γ′λ

?
(γ′λγ

′
λ

?
)−1

)
(X2

t , λ)

(I + γ′x(X
2
t , λ))∇iX

2
t

]
e−ctρ1(λ)dλ dt.

We can apply an integration by parts formula for the integral with respect
to λ, and we deduce from our assumptions that ∇i(T f) is dominated by the
supremum norm of f . Derivatives of higher order are dealt with similarly, so
we obtain that (T f)(k) is dominated by ‖f‖∞ for any order k. Then a usual
approximation procedure enables to prove that T f is C∞

b for any bounded
Borel function f ; in particular, for f = h, we obtain that h5 is C∞. Thus we
obtain the Cj smoothness of h = h1 − h2 + h4 + h5 in a neighbourhood of x.
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Chapitres XVII à XXIV, Hermann, 1992.

[8] T. Fujiwara and H. Kunita, Stochastic differential equations of jump
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