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Running head. Manifold-valued martingales

Abstract. We are given a random variable on a Riemannian manifold and we study

the set of manifold-valued martingales converging to this variable; more precisely we are

interested in uniqueness and existence theorems. We use stochastic calculus tools; for the

existence, we restrict ourselves to Wiener probability spaces and we apply the differential

calculus which has been developed on them. The relations with some nonlinear partial

differential equations are discussed.
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0. Introduction

It is well-known that real-valued martingales can be used in the study of some partial

differential equations, such as the heat equation and the Dirichlet problem; let us describe

briefly how this can be done. Consider a smooth manifold U and a second order differential

operator L on U without term of order zero; if φ is a real-valued function defined on U ,

the heat equation consists of finding a real-valued function f defined on (−∞, 0]× U and

satisfying
∂f

∂t
+ Lf = 0, f(0, .) = φ. (0.1)

The probabilistic solution of (0.1) is as follows; let Ω be the canonical space of continuous

paths from (−∞, 0] into U , let Xt be the canonical process and let IPs,x be the law of the

Markov process with infinitesimal generator L and initial value x at time s; then a smooth

function f is solution of (0.1) if and only if for any (s, x), the process f(t,Xt), t ≥ s is a

local IPs,x-martingale with final value φ(X0). Now let U be a manifold with boundary ∂U

and interior U ; if φ is a real-valued function defined on ∂U , the Dirichlet problem consists

of finding a real-valued function f defined on U and satisfying

Lf = 0 on U, f = φ on ∂U. (0.2)

This problem has also a probabilistic counterpart; let Ω be the canonical space of contin-

uous paths from [0,∞) into U stopped when they quit U , let Xt be the canonical process,

let

τ = inf
{
t ≥ 0, Xt ∈ ∂U

}
, (0.3)

let IPx be the law of the Markov process with generator L stopped at τ with initial value

x at time 0, and suppose that τ <∞ P x-almost surely for any x; then a smooth function

f is solution of (0.2) if and only if for any x, the process f(Xt) is a local IPx-martingale

converging to φ(Xτ ). Thus both problems can be solved by considering local martingales

converging to some fixed random variable.
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Let V be a complete Riemannian manifold; the Riemannian metric defines a Hessian

operator; if g is a smooth real-valued function defined on V , its Hessian at point x will

be denoted by g′′(x); it is a bilinear form on TxV ; if U and L are as above and if f is a

smooth function from U into V , one can define a field LV f by the following formula; it is

a section of the tangent space TV satisfying(
LV f(x), (g′ ◦ f)(x)

)
= L(g ◦ f)(x) (0.4)

for any smooth real-valued function g satisfying (g′′ ◦ f)(x) = 0 (according to the second-

order differential geometry [11], LV f is the first-order part of the second-order vector field

g 7→ L(g ◦ f)); LV f is called the tension field of f and the equation LV f = 0 characterizes

L-harmonic maps. By replacing L by LV , we can consider equations similar to (0.1) and

(0.2), but with φ and f taking their values in V ; they are nonlinear partial differential

equations which can be studied with analytical methods (see [4], [5]). These equations

have also equivalent probabilistic problems provided that one uses the notion of V -valued

martingale; if Mt is a continuous adapted V -valued process, we will say that Mt is a

martingale (see [2]) if for any smooth real-valued bounded function g on V and for any

stopping times T1 ≤ T2 such that g′′(Mt) ≥ 0 on {T1 ≤ t < T2}, then g(Mt), T1 ≤ t ≤ T2,

is a submartingale. As in the real case, we have to study the set of V -valued martingales

converging almost surely to some fixed random variable; the aim of this work is to study

existence and uniqueness of processes in this set; this program was already completed for

the circle in [14]; for general manifolds some results are proved in [6], [9]; we will check that

they are implied by our results. The uniqueness will rely on a maximum principle. For the

existence, we will suppose that the probability space is a Wiener space and will consider

two types of terminal values: the variables which live in a small enough convex domain of

V , and the variables which may be unbounded but are differentiable in the sense of the

differential calculus on the Wiener space.

We will first give some preliminary results concerning the geodesic distance and the

differential calculus on the Wiener space. In §2, we will study the uniqueness problem;

we will describe classes of martingales in which two martingales converging to the same

value are indistinguishable; the basic tool is a maximum principle which will be proved by
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means of Itô’s formula. In §3 we will prove an existence theorem when the final value is

differentiable in the sense of the differential calculus on the Wiener space; in the proof we

will need a stochastic implicit function theorem. In §4 we will obtain a general existence

theorem for martingales taking values in a domain of V satisfying some assumptions;

regular geodesic balls (see [9]) are a particular case of such domains; in particular, when

the sectional curvatures are non-positive, we will obtain the existence for any integrable

final value. Finally, in §5, from these results we will deduce probabilistic solutions to the

nonlinear heat equation and Dirichlet problem.

Throughout this work, we will assume that V is a complete Riemannian manifold

(without boundary) of dimension d; in each tangent space TxV , the Riemannian norm and

product will be denoted by |.| and (., .). We will always assume that the injectivity radius

R of V is positive and that its sectional curvatures are bounded above; we will let K be

the smallest non-negative number dominating all the sectional curvatures. If f is a smooth

real function defined on V , its derivative f ′(x) is a linear form on TxV and its value on

a tangent vector u will be denoted by f ′(x)〈u〉; similarly, the Hessian f ′′(x) is a bilinear

form the value of which is denoted by f ′′(x)〈u, u〉; if f is defined on V × V endowed with

the product Riemannian metric, if x = (x0, x1) is a point, u = (u0, u1) a tangent vector,

we will consider the partial derivatives

f ′′00(x)〈u0, u0〉 = f ′′(x)〈(u0, 0), (u0, 0)〉, (0.5)

f ′′01(x)〈u0, u1〉 = f ′′(x)〈(u0, 0), (0, u1)〉 (0.6)

and f ′′11 defined similarly. We will always assume that we are given a probability space

(Ω,F ,Ft, IP) satisfying the usual conditions; for some results, we will suppose that Ω is

a Wiener space. The quadratic variation of a V -valued martingale Mt (computed for the

Riemannian metric) will be denoted by 〈〈M〉〉t. We will say that a sequence of processes Xk
t

converges uniformly in probability to a process Xt if supt |Xk
t −Xt| converges in probability

to 0. Different constant numbers will often be denoted by the same letter C. Geometric

results which are used in this work can be found in [1], [10], whereas the theory of real-

valued martingales and the stochastic differential geometry are respectively dealt with in

[3] and [6] (among other books and articles).
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1. Preliminary results

We will first prove some useful geometrical estimates for the distance function on

V × V . Then we will briefly describe the differential calculus on Wiener spaces.

§1.1 Estimates on the derivatives of the distance

If x0 and x1 are two points of V , denote by δ(x0, x1) the geodesic distance between

them; the function δ is defined on V × V and is smooth except on the cut locus and the

diagonal {x0 = x1}. We want to estimate its first and second derivatives when V × V is

endowed with the product Riemannian metric. Let x = (x0, x1) be a point which is not

in the cut locus or the diagonal; there exists a unique minimizing geodesic c(t), 0 ≤ t ≤ 1

from x0 to x1; if ut is a vector of Tc(t)V , we can decompose ut as vt + wt where vt is the

orthogonal projection of ut on c′(t); the vectors vt and wt will be respectively called the

parallel and orthogonal components of ut. If u = (u0, u1) is a vector of Tx(V ×V ), (v0, v1)

and (w0, w1) will also be called its parallel and orthogonal components.

Lemma 1.1.1. Let x be point of V × V which is not in the cut locus and such that

0 < δ(x) < π/
√
K. Let u be a vector of Tx(V × V ) and let v and w be its parallel and

orthogonal components. Then ∣∣δ′(x)〈u〉∣∣ ≤ √
2|v| (1.1.1)

and

δ′′(x)〈u, u〉 ≥ −
√
K tan

(√Kδ(x)
2

)
|w|2. (1.1.2)

Proof. Let g(s), s ≥ 0 be the geodesic line on V × V satisfying g(0) = x and g′(0) = u;

then the quantities that we have to estimate are

δ′(x)〈u〉 =
d

ds
δ(g(s))

∣∣∣∣
s=0

, δ′′(x)〈u, u〉 =
d2

ds2
δ(g(s))

∣∣∣∣
s=0

. (1.1.3)

For s small enough, let c(s, t), 0 ≤ t ≤ 1 be the unique minimizing geodesic joining the

two components of g(s); put c(t) = c(0, t). Let J(t) be the derivative of c(s, t) with respect

to s at s = 0; it is the Jacobi field on c(t) satisfying J(0) = u0 and J(1) = u1; let J ′(t)

be the covariant derivative of J with respect to t. We also define K(t) to be the sectional
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curvature at the point c(t) for the plane generated by c′(t) and J(t) (zero if these two

vectors do not generate a plane); if K0 is the curvature tensor of V , then(
K0

(
J(t), c′(t)

)
c′(t), J(t)

)
= K(t)

[∣∣J(t)
∣∣2∣∣c′(t)∣∣2 − (

J(t), c′(t)
)2

]
. (1.1.4)

By noticing that δ(g(s)) is the norm of ∂
∂tc(s, t), one can compute the expressions of (1.1.3)

(see the proof of Proposition 3.8.1 of [10]) and obtain

δ′(x)〈u〉 =

(
c′(t), J ′(t)

)∣∣c′(t)∣∣ (1.1.5)

for any 0 ≤ t ≤ 1 and

δ′′(x)〈u, u〉 =
∫ 1

0

∣∣J ′(t)∣∣2∣∣c′(t)∣∣2 − (
J ′(t), c′(t)

)2∣∣c′(t)∣∣3 dt

−
∫ 1

0

(
K0

(
J(t), c′(t)

)
c′(t), J(t)

)
∣∣c′(t)∣∣ dt

=
∫ 1

0

∣∣J ′(t)∣∣2∣∣c′(t)∣∣2 − (
J ′(t), c′(t)

)2∣∣c′(t)∣∣3 dt

−
∫ 1

0

K(t)

∣∣J(t)
∣∣2∣∣c′(t)∣∣2 − (

J(t), c′(t)
)2∣∣c′(t)∣∣ dt. (1.1.6)

Now the decomposition u = v + w induces a decomposition J = Jv + Jw into two Jacobi

fields which are its parallel and orthogonal components. Thus it follows from (1.1.5)

that δ′(x)〈u〉 depends only on the component v; moreover one immediately deduces from

the triangle inequality that δ is
√

2-Lipschitz so (1.1.1) is checked. Similarly, δ′′(x)〈u, u〉

depends only on the component w; moreover if K = 0, the right-hand side of (1.1.6) is

non-negative so we only have to consider the case K > 0. Formula (1.1.6) can be written

as

δ′′(x)〈u, u〉 =
1

δ(x)

∫ 1

0

∣∣J ′w(t)
∣∣2dt− δ(x)

∫ 1

0

K(t)
∣∣Jw(t)

∣∣2dt. (1.1.7)

On the other hand, we can deduce from the Jacobi equation

J ′′(t) +K0

(
J(t), c′(t)

)
c′(t) = 0 (1.1.8)

that (
J(t), J ′′(t)

)
+K(t)

(∣∣J(t)
∣∣2∣∣c′(t)∣∣2 − (

J(t), c′(t)
)2

)
= 0 (1.1.9)
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so for J = Jw, this yields(
Jw(t), J ′′w(t)

)
+K(t)δ2(x)

∣∣Jw(t)
∣∣2 = 0. (1.1.10)

We deduce from (1.1.7) and (1.1.10) that

δ′′(x)〈u, u〉 =
1

2δ(x)

∫ 1

0

d2

dt2
∣∣Jw(t)

∣∣2dt (1.1.11)

and that

d2

dt2
∣∣Jw(t)

∣∣ =

∣∣Jw(t)
∣∣2∣∣J ′w(t)

∣∣2 − (
Jw(t), J ′w(t)

)2∣∣Jw(t)
∣∣3 −K(t)δ2(x)

∣∣Jw(t)
∣∣

≥ −Kδ2(x)
∣∣Jw(t)

∣∣ (1.1.12)

at points t such that Jw(t) 6= 0. Consider the function

j(t) = α sin
(√
Kδ(x)t+ β

)
(1.1.13)

where α > 0 and 0 ≤ β ≤ π −
√
Kδ(x) are defined by

α sinβ = |w0|, α sin
(√
Kδ(x) + β

)
= |w1|. (1.1.14)

In particular

α2 =
|w|2

sin2 β + sin2
(√
Kδ(x) + β

) . (1.1.15)

By comparing (1.1.12) with the corresponding differential equation with boundary condi-

tions, one deduces since
√
Kδ(x) < π that

d

dt

∣∣Jw(t)
∣∣∣∣∣∣

t=0

≤ j′(0),
d

dt

∣∣Jw(t)
∣∣∣∣∣∣

t=1

≥ j′(1). (1.1.16)

Moreover, |Jw(0)| and |Jw(1)| are respectively j(0) and j(1). Thus from (1.1.11),

δ′′(x)〈u, u〉 ≥ 1
δ(x)

(
j(1)j′(1)− j(0)j′(0)

)
= |w|2

√
K

sin
(√
Kδ(x) + β

)
cos

(√
Kδ(x) + β

)
− sinβ cosβ

sin2 β + sin2
(√
Kδ(x) + β

) . (1.1.17)

The derivative with respect to β of the above ratio is

cos
(
2
√
Kδ(x) + 2β

)
− cos

(
2β

)[
sin2 β + sin2

(√
Kδ(x) + β

)]2

so the minimum with respect to β of the right-hand side of (1.1.17) is obtained for β =

(π −
√
Kδ(x))/2 and is exactly the right-hand side of (1.1.2).
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§1.2 Estimates on the partial derivatives of the distance

Lemma 1.2.1. Let x be a point of V × V which is not in the cut locus and such that

0 < δ(x) < π/
√
K. Let (u0, u1) be a tangent vector and denote by (v0, v1) and (w0, w1)

its parallel and orthogonal components. Then

∣∣δ′0(x)〈u0〉
∣∣ = |v0|, (1.2.1)

δ′′00(x)〈u0, u0〉 ≥
√
K cot

(√
Kδ(x)

)
|w0|2 (1.2.2)

and ∣∣δ′′01(x)〈u0, u1〉
∣∣ ≤ √

K

sin
(√
Kδ(x)

) |w0| |w1| (1.2.3)

where the coefficients in (1.2.2) and (1.2.3) are defined to be 1/δ(x) if K = 0.

Proof. We will use the notations defined in the proof of Lemma 1.1.1. It is sufficient to

prove the lemma for K > 0; the case K = 0 is obtained by applying the result for K > 0

and letting K ↓ 0. Note also that the linear form δ′0(x) is the scalar product by c′(0) so

we immediately deduce (1.2.1). Put u = (u0, 0) and u = (0, u1). We can apply (1.1.17) to

our vector u with j(0) = |w0| and j(1) = 0 so that

β = π −
√
Kδ(x), α = |w0|/ sinβ. (1.2.4)

We deduce (1.2.2). Let us now prove (1.2.3). Use the decomposition u = v + w and

u = v + w; by polarizing (1.1.11) we obtain

δ′′(x)〈u, u〉 =
1

2δ(x)

∫ 1

0

d2

dt2
(
Jw(t), Jw(t)

)
dt (1.2.5)

=
1

2δ(x)

[ d
dt

(
Jw(t), Jw(t)

)∣∣∣∣
t=1

− d

dt

(
Jw(t), Jw(t)

)∣∣∣∣
t=0

]
.

We have ∣∣∣(Jw(t), Jw(t)
)∣∣∣ ≤ ∣∣Jw(t)

∣∣∣∣Jw(t)
∣∣ (1.2.6)

and these terms are 0 for t = 0 or 1, so∣∣∣ d
dt

(
Jw(t), Jw(t)

)∣∣∣ ≤ ∣∣∣∣ ddt(∣∣Jw(t)
∣∣∣∣Jw(t)

∣∣)∣∣∣∣ (1.2.7)
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for t = 0 or 1. Thus

∣∣δ′′(x)〈u, u〉∣∣ ≤ 1
2δ(x)

[
|w| d

dt

∣∣Jw(t)
∣∣∣∣∣∣

t=0

− |w| d
dt

∣∣Jw(t)
∣∣∣∣∣∣

t=1

]
. (1.2.8)

We deduce from (1.1.16) that we can estimate the derivative of |Jw(t)| at t = 1 by j′(1)

where j(t) is given by (1.1.13) and (1.2.4); thus

− d

dt

∣∣Jw(t)
∣∣∣∣∣∣

t=1

≤ |w|
√
Kδ(x)

sin
(√
Kδ(x)

) . (1.2.9)

The derivative of
∣∣Jw(t)

∣∣ is estimated in a similar way so that we check

∣∣δ′′(x)〈u, u〉∣∣ ≤ |w| |w|
√
K

sin
(√
Kδ(x)

) . (1.2.10)

This is exactly (1.2.3).

§1.3 The differential calculus on Wiener spaces

In this subsection, we suppose that the probability space is a Wiener space, we review

briefly the differential calculus which can be developed on it (see for instance [12]) and

apply it to V -valued variables. So let Ω be the space of continuous functions from [0,∞)

into some Euclidean space IRm, let IP be the standard Wiener measure and Wt be the

canonical process: it is a m-dimensional standard Wiener process. Then let S(IR) be the

set of real-valued smooth functionals X = f(Wt1 , . . . ,Wtk
) which are bounded as well as

all their derivatives. For such a smooth functional, define

DtX =
k∑

i=1

∂f

∂xi
(Wt1 , . . . ,Wtk

)1{t≤ti} (1.3.1)

considered as a m-dimensional row vector and put

∥∥X∥∥2

D = IEX2 + IE
∫ ∞

0

|DtX|2dt. (1.3.2)

One can prove that S(IR) is closable for this norm and we denote by D(IR) the resulting

completion; then D(IR) is a Hilbert space and if X is in it, the process DtX is well defined

almost everywhere. If X is in D(IR) and if φ is uniformly Lipschitz, then φ(X) is in

9



D(IR) (this can be proved by approximating φ by smooth functions); if moreover φ is

smooth, then the derivative of φ(X) is given by the classical chain rule; more generally, if

Xi are p variables in D(IR) and if φ is Lipschitz on IRp endowed with the sup norm, then

φ(X1, . . . , Xp) is in D(IR) and

∣∣Dφ(X1, . . . , Xp)
∣∣ ≤ ‖φ‖lip sup

i
|DXi|. (1.3.3)

A fundamental property of variables of D(IR) is the representation formula

X = IEX +
m∑

j=1

∫ ∞

0

IE
[
Dj

tX
∣∣ Ft

]
dW j

t . (1.3.4)

We will need two other properties of D(IR).

Lemma 1.3.1. Let X be a variable of D(IR) which takes its values in a discrete subset of

IR; then X is almost surely constant.

Proof. Denote the discrete subset by A; there exists a smooth bounded function φ with

bounded derivative such that φ′ = 0 on A and φ is injective. Thus φ(X) is in D(IR) and

φ′(X) = 0 implies Dφ(X) = 0; thus, from (1.3.4), φ(X) is almost surely constant and we

can conclude.

Lemma 1.3.2. Let Xn be a sequence of variables of D(IR) converging in probability to

X; suppose that DXn is bounded in IL2([0,∞]× IP). Then X is in D(IR).

Proof. Since D(IR) is a Hilbert space, it is sufficient to check that Xn is bounded for

the norm (1.3.2), and therefore that it is bounded in IL2; but we deduce from (1.3.4) that

Xn−IEXn is bounded in IL2 and if IEXn is unbounded, Xn cannot converge in probability.

Then letD(V ) be the set of V -valued variablesX such that for any function φ : V → IR

which is smooth and uniformly Lipschitz, the variable φ(X) is in D(IR); by using the Nash

embedding theorem, the manifold V can be considered as a submanifold of a Euclidean

space IRr, and saying thatX is in D(V ) is equivalent to saying that each component ofX in
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IRr is in D(IR). Moreover if X is in D(V ), we can consider a process (X,D1
tX, . . . ,D

m
t X)

defined IP⊗ dt almost everywhere, such that Dj
tX ∈ TXV and

Dj
tφ(X) =

(
φ′(X), Dj

tX
)

IP⊗ dt a.e. (1.3.5)

If Xt is a measurable process, we will say that X is in D?(V ) if X is the uniform limit

in probability of a sequence of V -valued step processes Y n (associated to deterministic

subdivisions) satisfying

lim sup
n→∞

IE
m∑

j=1

∫ ∞

0

sup
t

∣∣Dj
sY

n
t

∣∣2ds <∞. (1.3.6)

This implies in particular that for any t, Xt is in D(V ).

2. The uniqueness property

Fix some filtered probability space (Ω,F ,Ft, IP). Suppose that Mt and M t are two

martingales on the Riemannian manifold V converging almost surely to the same variable

as t → ∞; we want to find conditions ensuring that M = M almost surely. If V = IR,

the process Mt −M t is a local martingale converging to 0; it is well known that it is not

necessarily zero; however if T denotes the set of Ft stopping times and if Mt and M t are

in the class of processes Xt such that (Xτ , τ ∈ T ) is uniformly integrable, then Mt and M t

are uniformly integrable martingales, so they coincide. More generally if V is a Cartan-

Hadamard manifold (a simply connected manifold with non-positive sectional curvatures)

then the geodesic distance δ is convex on V × V so δ(Mt,M t) is a local submartingale;

thus if O is some fixed point of V and Mt and M t are in the class of processes Xt such that

(δ(O,Xτ ), τ ∈ T ) is uniformly integrable, we can again conclude that M and M coincide.

On the other hand, this property does not hold for more general manifolds: consider for

instance the circle ([14]). The aim of this section is to describe classes of martingales

satisfying this property; the basic tool will be a maximum principle.

§2.1 A maximum principle

In this subsection, we prove a maximum principle and give simple applications of it.

More precisely, the maximum principle says that if a subset of V satisfies a convexity
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property and if Mt is a V -valued martingale converging to a variable in the subset, then

the whole martingale lives in the subset; actually this will generally not be valid for all

martingales but only for those in some class which we now define.

Definition 2.1.1. If λ is a non-negative measurable function defined on V , let Eλ be the

set of V -valued martingales Mt satisfying

IE exp
∫ ∞

0

λ(Mt)d〈〈M〉〉t <∞. (2.1.1)

First note that if λ is locally bounded and if Mt is a martingale which converges

almost surely, then it follows from [16] that
∫
λ(Mt)d〈〈M〉〉t is almost surely finite. On the

other hand, we now verify by a simple application of Itô’s formula that the class Eλ may

contain all ∆-valued martingales, for some small enough domains ∆.

Proposition 2.1.2. Let ∆ be an open subset of V ; suppose that we are given on ∆ a

non-negative locally bounded function λ and a C2 function f satisfying c ≤ f(x) ≤ C for

some positive c and C; suppose moreover that f ′′ + 2λf ≤ 0 on ∆: this means that

f ′′(x)〈u, u〉+ 2λ(x)f(x)|u|2 ≤ 0. (2.1.2)

Then any ∆-valued martingale belongs to Eλ.

Proof. Define

St = f(Xt) exp
∫ t

0

λ(Ms)d〈〈M〉〉s. (2.1.3)

It follows immediately from Itô’s formula and condition (2.1.2) that St is a local super-

martingale; since it is non-negative, we deduce that IES∞ ≤ IES0. By using the lower and

upper bounds on f , we deduce (2.1.1).

We now state and prove the maximum principle for martingales.

Theorem 2.1.3. Let f be a real-valued continuous function defined on V and consider

the subsets ∆ = {f < 0} and F = {f ≤ 0}.

(a) Suppose that f is C2 and bounded on V \ F and that there exists a non-negative

12



function λ defined on V \ F and such that f ′′ + 2λf ≥ 0. Extend the function λ to V by

putting λ = 0 on F . Then any martingale of Eλ converging to a variable in F lives in F .

(b) Suppose that f is C2 on F and that there exists a non-positive locally bounded function

defined on F and such that f ′′+2λf ≥ 0. Then any martingale living in F and converging

to a variable in ∆ lives in ∆.

Proof. Let Mt be a martingale of Eλ converging to M∞ ∈ F . Fix some time t0 ≥ 0 and

put

τ = inf
{
t ≥ t0;Mt ∈ F

}
. (2.1.4)

The stopping time τ may be infinite but in any case, Mτ is in F . Define the process St

by (2.1.3). On the event {Mt0 /∈ F}, the process (St, t0 ≤ t < τ) is a non-negative local

submartingale with positive initial value and zero limit; since f is bounded and Mt is in

Eλ, it is actually a uniformly integrable submartingale; we obtain a contradiction so the

probability of the event {Mt0 /∈ F} is zero. Since t0 is arbitrary and F is closed, we deduce

(a). Under the assumptions of (b), let Mt be a martingale living in F ; if St is again defined

by (2.1.3), it is a non-positive local submartingale so the event {supt St = 0} is almost

surely equal to {S∞ = 0}. Now suppose that Mt converges to M∞ ∈ ∆; since λ is locally

bounded, it follows from [16] that the integral in the exponential of (2.1.3) converges as

t→∞, so S∞ < 0; thus supt St < 0 and (b) is proved.

Remark. We have assumed that f is C2 in order to apply Itô’s formula but we can also

use less regular functions by an approximation technique. For instance, in case (a), if

f is the uniform limit of a uniformly bounded sequence of C2 functions fn and if f ′′n is

uniformly lower bounded, the theorem still holds with f ′′ replaced by lim inf f ′′n (apply

Fatou’s lemma).

Before the main applications, let us give two consequences of the maximum principle

which will not be used subsequently. The first one can be compared with Theorem 3.1 of

[9].

Corollary 2.1.4. Consider a constant function λ > 0 such that λ ≥ K
8 ∨ 1

8

(
π
R

)2
. Then

any martingale of Eλ converging almost surely to a deterministic value is constant.

13



Remark. In a Cartan-Hadamard manifold, the property holds for martingales of
⋃

λ>0 Eλ;

actually in this case, by using the convexity of the distance function, one can prove that

if the sectional curvatures are bounded below, it is sufficient to assume that 〈〈M〉〉∞ is

integrable.

Proof. Let us consider martingales converging to a point x0; define the function

f(x) = sin
(√

2λδ(x0, x)
)

if δ(x0, x) ≤
π

2
√

2λ
, (2.1.5)

1 otherwise. Then f is C1 on V \ {x0}, is C2 except at x0 and on the geodesic sphere

{δ(x0, x) = π/
√

8λ}. Let us estimate f ′′(x) for x in the geodesic ball and different from

x0; from the estimates of Lemma 1.2.1, if u is a tangent vector with parallel and orthogonal

components v and w,

f ′′(x)〈u, u〉 =
√

2λ cos
(√

2λδ(x0, x)
)
δ′′11(x0, x)〈u, u〉

− 2λ sin
(√

2λδ(x0, x)
)∣∣δ′1(x0, x)〈u〉

∣∣2
≥
√

2λK
cos

(√
K
2 δ(x0, x)

)
sin

(√
Kδ(x0, x)

) (
cos

(√
Kδ(x0, x)

)
∧ 0

)
|w|2

− 2λf(x)|v|2 (2.1.6)

because
√

2λ ≥
√
K/2. But if 0 < z < π/2, one has

cos(2z) cos z
sin(2z)

=
1− 2 sin2 z

2 sin z
≥ −1

2
sin z (2.1.7)

so

f ′′(x)〈u, u〉 ≥ −
√
λK

2
sin

(√K
2
δ(x0, x)

)
|w|2 − 2λf(x)|v|2

≥ −2λf(x)|u|2. (2.1.8)

By regularizing f , we can apply Theorem 2.1.3 and deduce the corollary.

The maximum principle can also be used for convex domains of V . Let ∆ be an open

subset of V and suppose that its boundary ∂∆ is a smooth submanifold of dimension d−1;

consider the function

f0(x) = −(−1)1∆(x)δ(x, ∂∆). (2.1.9)
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Each point of ∂∆ admits on a neighbourhood a system of local coordinates (y1, . . . , yd)

such that f0(x) = yd; in particular f0 is smooth on a neighbourhood of ∂∆. We will say

that the boundary is convex if f ′′0 ≥ 0 on ∂∆ (f ′′0 is the second fundamental form of ∂∆

relative to the normal vector field exiting ∆).

Corollary 2.1.5. Let ∆ be a relatively compact open subset of V with smooth convex

boundary. There exists a positive constant λ such that any martingale of Eλ converging

to a variable in ∆ lives in ∆.

Proof. We can construct a smooth function f on V such that f = f0 on a neighbourhood

of ∂∆, f > 0 on V \∆, f < 0 on ∆ and f = 1 except on a compact subset. The domain

∆ is convex so f ′′(x) is non-negative on {f(x) = 0}. Since f ′′ is Lipschitz, we can deduce

that f ′′/|f | is lower bounded by some contant number; we conclude with Theorem 2.1.3.

§2.2 The uniqueness results

We can easily deduce from the maximum principle the following uniqueness result.

Theorem 2.2.1. Consider a constant function λ > 0 such that λ ≥ K
2 ∨

1
2

(
π
R

)2
. Then for

any measurable variable, there is at most one martingale of the class Eλ converging almost

surely to this variable.

Proof. Put ρ = (2λ)−1/2π and consider the function

f(x) = sin
(πδ(x)

2ρ

)
1{δ(x)<ρ} + 1{δ(x)≥ρ} (2.2.1)

defined on V × V . Then on {0 < δ < ρ}, the function f is smooth and

f ′′(x)〈u, u〉 =
π

2ρ
cos

(πδ(x)
2ρ

)
δ′′(x)〈u, u〉 −

( π

2ρ

)2

f(x)
∣∣δ′(x)〈u〉∣∣2. (2.2.2)

¿From Lemma 1.1.1 we deduce

f ′′(x)〈u, u〉 ≥ − π

2ρ

√
K tan

(1
2

√
Kδ(x)

)
cos

(πδ(x)
2ρ

)
|w|2 − 1

2

(π
ρ

)2

f(x)|v|2

≥ −1
2

(π
ρ

)2

f(x)|w|2 − 1
2

(π
ρ

)2

f(x)|v|2 (2.2.3)
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where the last inequality follows from K ≤
(

π
ρ

)2. Since |u|2 = |v|2 + |w|2 and from the

definition of ρ, we deduce that f ′′ + λf ≥ 0; moreover the set {f = 0} is exactly the

diagonal of V × V . On the other hand, if Mt and M t are two martingales of Eλ such that

M∞ = M∞, then (Mt,M t) is a V × V -valued martingale converging to a variable in the

diagonal; since

〈〈(M,M)〉〉t = 〈〈M〉〉t + 〈〈M〉〉t, (2.2.4)

we deduce from the Cauchy-Schwartz inequality that (M,M) is in Eλ/2. By regularizing

f , we can apply Theorem 2.1.3 and deduce that (M,M) lives in the diagonal.

Remark. If M and M take their values in an open subset ∆ of V such that any two

points of ∆ are linked by at least one minimizing ∆-valued geodesic segment, then in

previous theorem, the constant numbers K and R refer to ∆ rather than V . If moreover

this geodesic segment is unique, one can take R = ∞.

Example. A geodesic ball B(O, ρ) is said to be regular (see [9]) if B × B does not meet

the cut locus and ρ < π/(2
√
K). By applying Proposition 2.1.2 to the function

x 7→ cos
(√
Kδ(O, x)

)
,

we deduce from Theorem 2.2.1 that two martingales taking their values in a regular geodesic

ball and converging to the same variable coincide: this is the uniqueness result of [9].

We now verify that the part depending on R in the constant λ of Theorem 2.2.1 cannot

be improved; in particular for manifolds satisfying K ≤ π2/R2, this constant appears to

be the best one.

Proposition 2.2.2. Suppose that λ is a constant satisfying 0 < λ < 1
2

(
π
R

)2
. If on our

probability space, there exists a one-dimensional Ft Wiener process, then one can find two

different martingales of Eλ converging to the same variable.

Proof. From the definition of the injectivity radius, one can deduce that there exist two

different geodesic lines c(t) and c(t), 0 ≤ t ≤ 1, of length less than π/
√

2λ and satisfying

c(0) = c(0), c(1) = c(1). Then if Wt is the Wiener process and if

τ = inf
{
t ≥ 0,

∣∣Wt

∣∣ ≥ 1/2
}
, (2.2.5)

16



we consider the martingales

Mt = c
(1

2
+Wt∧τ

)
, M t = c

(1
2

+Wt∧τ

)
. (2.2.6)

Then these two martingales converge to the same variable and their quadratic varia-

tions are at most απ2τ/(2λ) for some α < 1. But from Itô’s formula, the process

cos(
√
απWt) exp(απ2t/2) is a local martingale; when stopped at τ , it is positive, so it

is a supermartingale and in particular

cos
(√
απ/2

)
IE exp

(
απ2τ/2

)
≤ 1. (2.2.7)

Thus M and M are in Eλ.

For martingales which are not in Eπ2/2R2 , the uniqueness does not hold; however one

can sometimes obtain a weaker result. To this end, we use the notion of Riemannian

covering manifold (see [1]): it consists of a Riemannian manifold Ṽ and of a function of

Ṽ onto V which is locally isometric; in particular, a manifold admits a unique (up to an

isometry) simply connected covering manifold called its universal cover. Uniqueness for

V -valued martingales of Eλ implies the uniqueness for Ṽ -valued martingales of Eλ but the

converse is not necessarily true, and we are going to prove two weaker forms of this converse

statement. We now define a notion of homotopy; we will say that two adapted continuous

processes Yt and Y t converging almost surely to the same variable L are homotopic if

there exists a family (Y α
t ), 0 ≤ α ≤ 1 of adapted processes such that (α, t) 7→ Y α

t is almost

surely continuous on [0, 1]× [0,∞], Y 0
t = Yt, Y 1

t = Y t and Y α
∞ = L.

Theorem 2.2.3. Let λ be a non-negative function, let Ṽ be the universal cover of V and

suppose that the uniqueness holds for Ṽ -valued martingales of Eλ. Let Mt and M t be two

V -valued martingales of Eλ converging to the same variable which are homotopic. Then

M = M .

Remark. The manifold V and its universal cover Ṽ have the same sectional curvatures

but the injectivity radius may be larger for the cover; if the sectional curvatures are non-

positive, the injectivity radius of the cover is infinite, so we can take for λ any positive

constant.
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Proof. We will denote by Y α
t the family of processes going from Mt to M t. Consider the

cover Ṽ , the projection Φ : Ṽ → V and choose a point X0 in Ṽ such that Φ(X0) = M0;

then consider the lifting Xα
t of the process Y α

t so that X0
0 = X0; then for any α, Xα

t is an

adapted process and Xα
∞ does not depend on α; moreover Φ(X0

t ) = Mt and Φ(X1
t ) = M t

so X0
t and X1

t are martingales of Ṽ converging to the same variable; since Φ is locally

isometric, they have the same quadratic variation as Mt and M t, so they are in Eλ. From

our assumption, X0 = X1, so by projection on V , M = M .

We now prove a result where the homotopy condition is replaced by differentiability.

More precisely, we will limit ourselves to the case of a Wiener probability space and will

consider martingales which are smooth enough in the sense of the differential calculus on

this Wiener space (see §1.3).

Theorem 2.2.4. Let λ be a non-negative function, let Ṽ be the universal cover of V and

suppose that the uniqueness holds for Ṽ -valued martingales of Eλ. Let Mt and M t be two

V -valued martingales of Eλ converging to the same variable; suppose that M and M are

in D?(V ). Then M = M .

The first step in the proof of this theorem is the

Lemma 2.2.5. Let Ψ be a real-valued function defined on C([0,∞], V ) which is bounded

and uniformly Lipschitz for the sup norm. If Xt is a continuous process in D?(V ), then

Ψ(X) is in D(IR).

Proof. If x(t) is a step function such that δ(x(t−), x(t)) < R, we can consider the con-

tinuous function y(t) obtained by geodesic interpolation and put Ψ0(x) = Ψ(y); since the

sectional curvatures are bounded above by K, we can check that Ψ0 is uniformly Lipschitz

on {
sup

t
δ(x(t−), x(t)) < R ∧ π

2
√
K

}
.

Then we can construct a function Ψ1 defined on the set of step functions, which is uniformly

Lipschitz and such that Ψ1 = Ψ0 on{
sup

t
δ(x(t−), x(t)) <

R

2
∧ π

4
√
K

}
.
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Now consider a sequence of step processes Y n
t converging to Xt and such that (1.3.6) holds;

then Ψ1(Y n) converges in probability to Ψ(X). Moreover, by embedding V in a Euclidean

space, Ψ1(Y n) is a Lipschitz function of a finite number of variables of D(IR), so it is in

D(IR), and by applying (1.3.3) and (1.3.6), it appears that DΨ1(Y n) is bounded in IL2, so

from Lemma 1.3.2, Ψ(X) is in D(IR).

Proof of Theorem 2.2.4. Let Φ be the projection of Ṽ on V ; note that if Φ(x) = Φ(x),

then either x = x or δ(x, x) ≥ 2R. Consider a point X0 in Ṽ such that Φ(X0) = M0

and lift the process Mt in order to obtain a Ṽ -valued martingale Xt; similarly let X0 be

a point in Ṽ such that Φ(X0) = M0 and let Xt be the corresponding lifting of M t. We

deduce from Lemma 2.2.5 applied to (M,M) that for any bounded Lipschitz function ψ on

Ṽ × Ṽ , the variable ψ(X∞, X∞) is in D(IR); in particular, the variable δ(X∞, X∞)∧ (2R)

is in D(IR); but since Φ(X∞) = Φ(X∞), this variable takes its values in {0, 2R}, so from

Lemma 1.3.1 it is deterministic. If it is zero, then X∞ = X∞ so from our assumption,

X = X and therefore M = M . Thus if we assume that M and M are not almost surely

equal, then δ(X∞, X∞) ≥ 2R for any choice of (X0, X0); in particular, if we denote

by L(X0, X0;X∞, X∞) the law of (X∞, X∞) corresponding to an admissible choice of

(X0, X0) and if we consider the measure

m =
∑

(X0,X0)

L(X0, X0;X∞, X∞) (2.2.8)

then for any measurable subset A of Ṽ of diameter less than 2R, we have m(A× A) = 0.

On the other hand since the diameter of A is less than 2R, we also have

m(A×A) = IP
[
M∞ ∈ Φ(A)

]
(2.2.9)

so it cannot be zero for any A of small diameter. Thus the assumption M 6= M implies a

contradiction.

§2.3 A stability result

We have seen in last subsection that under some conditions, a martingale Mt is de-

termined by its limit M∞. The aim of this subsection is to estimate the perturbation on

Mt induced by a perturbation on M∞.
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Theorem 2.3.1. For x ∈ V , let κ(x) be the smallest non-negative number dominating the

sectional curvatures at x. Let Mα
t , α ∈ IR be a measurable family of V -valued martingales

converging to Mα
∞ such that 〈〈Mα〉〉∞ is bounded by a constant number; put Mt = M0

t .

We suppose that the variable

sup
α<β

δ(Mα
∞,M

β
∞) ∧ 1

β − α

is integrable. Define

Zt = lim sup
α,β→0

δ(Mα
t ,M

β
t )

|β − α|
. (2.3.1)

Then the process

St = Zt exp
1
2

∫ t

0

κ(Ms)d〈〈M〉〉s (2.3.2)

is a uniformly integrable submartingale.

Proof. Let ψ be a nondecreasing function defined on [0,∞) such that ψ(z) = z if z is

small enough, ψ′(z) = 0 is z is large enough and f = ψ ◦ δ is smooth. We deduce from the

calculation of Lemma 1.1.1 that f ′′ + 2λf ≥ 0 for some bounded continuous non-negative

function λ such that λ(x, x) = κ(x)/4. Thus for any α < β, the process

Sα,β
t =

f(Mα
t ,M

β
t )

β − α
exp

∫ t

0

λ(Mα
s ,M

β
s )

(
d〈〈Mα〉〉s + d〈〈Mβ〉〉s

)
(2.3.3)

is a bounded submartingale. We deduce that the family of variables supt S
α,β
t is bounded

in probability so in particular, we obtain the uniform convergence in probability of Mα
t

to Mt as α → 0. Consider V as a submanifold of a Euclidean space; then the family

Mα
t becomes a family of Euclidean semimartingales; if we decompose it, its quadratic

variation is uniformly bounded and the variation of its bounded variation part is bounded

in probability; thus (apply for instance Corollary 2.2.5 of [13]) the uniform convergence

in probability of Mα
t to Mt implies the uniform convergence in probability of 〈〈Mα〉〉t to

〈〈M〉〉t. Since λ(Mα
t ,M

β
t ) converges to κ(Mt)/4, we can also get (apply Theorem 2.4.4 of

[13]) the convergence in probability of the integral in (2.3.3) to the integral in (2.3.2) as

(α, β) → (0, 0). There exists a sequence (αk, βk) such that the convergence holds almost

surely, so

St = lim sup
k

Sαk,βk
t . (2.3.4)
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The processes Sα,β
t are submartingales which are dominated by a uniformly integrable

process; we can conclude by means of Fatou’s lemma.

In this theorem, we have let α, β tend to 0, but of course we can let them tend to

another value; thus we obtain the almost sure Lipschitz continuity of Mα with respect to

α and estimate ∂Mα
t /∂α; this process can be viewed as a stochastic Jacobi field along Mα

t .

3. The existence in the differentiable case

In this section we are given a random variable L and we want to construct a V -valued

martingale converging to this variable. Henceforth we will limit ourselves to the case of a

Wiener probability space and in this section, we will consider the case of a differentiable

variable L such that DL satisfies some estimate.

§3.1 Statement of the result

The aim of this section is to prove the

Theorem 3.1.1. Suppose that Ω is the m-dimensional Wiener space. Let ρt be a deter-

ministic non-negative function satisfying∫ ∞

0

ρ2
tdt < 1/K (3.1.1)

and let L be a variable of D(V ) satisfying

( m∑
j=1

IE
[
|Dj

tL|
∣∣ Ft

]2)1/2

≤ ρt. (3.1.2)

Then there exists a martingale Mt converging to L and such that

d

dt
〈〈M〉〉t ≤

ρ2
t

1−K
∫∞

t
ρ2

sds
. (3.1.3)

Moreover M is in D?(V ).

Remark 1. If the sectional curvatures are non-positive (K = 0), condition (3.1.1) simply

means that ρt is square integrable. In the general case, if ρt is square integrable but
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(3.1.1) does not hold, if t0 is such that
∫∞

t0
ρ2

tdt = 1/K, we deduce from Theorem 3.1.1 the

existence of a martingale Mt, t > t0 converging to L, but do not know whether it can be

extended at and before t0.

Remark 2. We deduce from (3.1.3) that 〈〈M〉〉∞ is uniformly bounded so Mt is in the

uniqueness class of Theorem 2.2.1.

Remark 3. When one is given a random variable L, in order to apply Theorem 3.1.1, one

has to find a Wiener process with respect to which L is measurable; to this end, one has

sometimes to enlarge the probability space. The choice of the Wiener process is not unique

and different choices may have different behaviours for the application of the theorem.

Remark 4. The above results can also be applied when the time interval is the whole

real line [−∞,+∞], so that we obtain martingales converging as t → −∞ as soon as∫ +∞
−∞ ρ2

tdt < 1/K. On the other hand, consider the case of the sphere Sd and let Mt be

the Brownian motion on Sd stopped at some fixed deterministic time T ; then Mt has no

limit as t→ −∞. Use the canonical isometric embedding of Sd in IRd+1; then Mt can be

defined on a Wiener space of dimension d+ 1 by the stochastic differential equation

dMt =
(
I −MtM

?
t

)
dWt −

d

2
Mtdt (3.1.4)

for −∞ < t <∞. One can check that MT is in D(IRd+1) for d ≥ 3 and that

DtMT

(
DtMT

)? =
(
I −MTM

?
T

)
exp

(
−2

∫ T

t

M?
s dWs − d(T − t)

)
(3.1.5)

for t ≤ T (compare the equations satisfied by both sides as T varies); by taking the trace

and by integrating, we obtain

∑
j

IE
[
|Dj

tMT |2
∣∣ Ft

]
= d exp

{
−(d− 2)(T − t)

}
. (3.1.6)

Thus we can take for ρt the square root of the right-hand side and
∫
ρ2

tdt is d/(d − 2); it

is finite but is more than 1/K = 1; we also see that the constant 1/K in Theorem 3.1.1

cannot be improved (at least without taking into account the dimension of the manifold).
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The theorem will be proved in several steps. First note that by a deterministic change

of time, we can always assume that L is F1 measurable and that ρt, 0 ≤ t ≤ 1 is a constant

ρ < 1/
√
K; then we have to find a martingale satisfying

d

dt
〈〈M〉〉t ≤

ρ2

1−Kρ2(1− t)
. (3.1.7)

In the proof we will suppose that we are in this simplified framework.

The basic idea is to construct a sequence of step processes which will be proved to

converge to our martingale. Let us now define this sequence. Let µ0 < R ∧ π√
K

. Then

there exists a constant 0 < µ < µ0 and a nondecreasing smooth function ψ from IR+ into

IR+ such that

ψ′(z) ≤
sin

(√
Kz

)
√
K

,
∣∣ψ′′(z)∣∣ ≤ 1 (3.1.8)

for any z, ψ′(z) = 0 for z ≥ µ0 and

ψ(z) =
1− cos

(√
Kz

)
K

(3.1.9)

if z ≤ µ, where this expression is by convention z2/2 if K = 0. Define also g = ψ ◦ δ; we

have constructed a smooth function on V × V which is equivalent to δ2(x)/2 as x tends

to the diagonal. Let (tni , 1 ≤ i ≤ n) be a sequence of subdivisions of [0, 1] such that the

step size εn = sup |tni+1 − tni | converges to 0 as n → ∞. Put also Xn
n = L; assuming that

Xn
i+1 is given and Ftn

i+1
measurable, let us construct the variable Xn

i . This construction

will be based on an approximation of the construction of the Riemannian centre of mass

described in [8]. The random function

x 7→ IE
[
g(x,Xn

i+1)
∣∣ Ftn

i

]
is non-negative, smooth, bounded by ψ(∞); moreover, if V is not compact, this function

converges almost surely to ψ(∞) as x→∞; thus it takes its minimal value at at least one

point and we can find a Ftn
i

measurable variable Xn
i satisfying

IE
[
g(Xn

i , X
n
i+1)

∣∣ Ftn
i

]
= inf

x
IE

[
g(x,Xn

i+1)
∣∣ Ftn

i

]
. (3.1.10)

Then we can consider the sequence of step processes Mn
t taking the value Xn

i for tni ≤ t <

tni+1. The martingale Mt will be the uniform limit in probability of the processes Mn
t .

23



§3.2 Preliminary properties

We first give a geometric result about the derivatives of the function g.

Lemma 3.2.1. Let x = (x0, x1) be a point of V × V , u0 ∈ Tx0V and u1 ∈ Tx1V . Then

g′′00(x)〈u0, u0〉 ≥
(
1−Kg(x)− Cg2(x)

)
|u0|2 (3.2.1)

for some C > 0 and ∣∣g′′01(x)〈u0, u1〉
∣∣ ≤ |u0| |u1|. (3.2.2)

Proof. We only need to prove the result on {0 < δ(x) < µ0}. Let us first prove (3.2.1).

Use the decomposition u0 = v0 +w0 into parallel and orthogonal vectors; we deduce from

Lemma 1.2.1 that

g′′00(x)〈u0, u0〉 ≥
(
ψ′′ ◦ δ

)
(x)|v0|2 +

(
ψ′ ◦ δ

)
(x)

√
K cot

(√
Kδ(x)

)
|w0|2. (3.2.3)

In particular this expression is bounded below by some −C0|u0|2 so there exists a C > 0

such that

g′′00(x)〈u0, u0〉 ≥ (1− Cg2(x))|u0|2 (3.2.4)

if δ(x) ≥ µ; on the other hand, if 0 < δ(x) < µ, (3.2.3) can be written as

g′′00(x)〈u0, u0〉 ≥ (1−Kg(x))|u0|2. (3.2.5)

The estimate (3.2.1) is then deduced from (3.2.4) and (3.2.5). Then, in order to prove

(3.2.2), we apply

g′′01(x)〈u0, u1〉 =
(
ψ′′ ◦ δ

)
(x)δ′0(x)〈u0〉δ′1(x)〈u1〉+

(
ψ′ ◦ δ

)
(x)δ′′01(x)〈u0, u1〉 (3.2.6)

and we deduce from Lemma 1.2.1 and (3.1.8) that

∣∣g′′01(x)〈u0, u1〉
∣∣ ≤ |v0| |v1|+ |w0| |w1|

≤ |u0| |u1|. (3.2.7)
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Lemma 3.2.2. Let Q be a probability measure on V ; then the function

Q 7→ inf
x

∫
g(x, z)Q(dz)

is continuous (for the weak convergence on probability measures). When this function is

less than some constant positive number, the infimum is obtained at exactly one point

which depends continuously on Q.

Remark 1. In particular, this result can be applied to the definition (3.1.10) of Xn
i by

taking for Q the conditional law of Xn
i+1 given Ftn

i
.

Remark 2. From the Bienaymé-Chebychev inequality, the second part of the lemma holds

in particular when
∫ ∫

g(x, z)Q(dx)Q(dz) is less than some constant number.

Proof. Since g is uniformly continuous, the map Q 7→
∫
g(x, z)Q(dz) is continuous uni-

formly in x; thus the map Q 7→ infx

∫
g(x, z)Q(dz) is continuous. Then fix Q and note

that if V is not compact the function γ : x 7→
∫
g(x, z)Q(dz) tends to its supremum as

x→∞ so its infimum is obtained at at least one point. From (3.2.1), γ is strictly convex

on the set where it is less than some constant number; thus, since γ is uniformly Lipschitz,

there exists some constant numbers C1 and C2 such that γ is strictly convex on the ball

B(x,C1) as soon as γ(x) < C2. Moreover, from the Bienaymé-Chebychev inequality, there

exists some C3 < C2 such that γ(x) < C3 implies

Q
[
B(x,C1/2)

]
> 1/2. (3.2.8)

Now if x0 and x1 are two points where the function γ gets its minimal value and if this

value is less than C3, then from (3.2.8), the two balls B(x0, C1/2) and B(x1, C1/2) must

intersect, so δ(x0, x1) is less than C1; but since γ is strictly convex on B(x0, C1), we

necessarily have x0 = x1 so the infimum is obtained at exactly one point. The continuous

dependence of this point follows easily.

Now, assuming that Xn
i+1 is in D(V ) and satisfies some estimate, we are going to

estimate the distance between Xn
i and Xn

i+1 so that one can apply Lemma 3.2.2.
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Lemma 3.2.3. Suppose that Xn
i+1 is in D(V ) and that

m∑
j=1

∫ tn
i+1

tn
i

IE
[
|Dj

tX
n
i+1|

∣∣∣ Ft

]2

dt ≤ νn
i (3.2.9)

almost surely for some deterministic number νn
i . There exists a constant number C > 0

such that

IE
[
g(Xn

i , X
n
i+1)

∣∣ Ftn
i

]
≤ νn

i

2
+ C

(
νn

i

)2 (3.2.10)

and

IE
[
g2(Xn

i , X
n
i+1)

∣∣ Ftn
i

]
≤ C

(
νn

i

)2
. (3.2.11)

Proof. The basic tool in the proof of this result is the following formula: if h(x0, x1) is a

smooth real Lipschitz function on V × V , if τ ≤ tni+1 is a stopping time and if X is a Fτ

measurable V -valued variable, then

h(X,Xn
i+1) = IE

[
h(X,Xn

i+1)
∣∣ Fτ

]
+

m∑
j=1

∫ tn
i+1

τ

IE
[
h′1(X,X

n
i+1)〈D

j
tX

n
i+1〉

∣∣∣ Ft

]
dW j

t .

(3.2.12)

This formula is a consequence of (1.3.4) (first consider the case h(x0, x1) = h0(x0)h1(x1)

and then use classical approximation techniques). In particular, (3.2.12) enables to esti-

mate the conditional variance of h(X,Xn
i+1) given Fτ . Since we are on a Wiener space, one

can find a time-continuous version for the conditional law of Xn
i+1 given Ft; on the other

hand we have seen in Lemma 3.2.2 that the map Q 7→ infx

∫
g(x, z)Q(dz) is continuous;

from these two remarks, the process infx IE[g(x,Xn
i+1)|Ft] is continuous. Note that it takes

the value IE[g(Xn
i , X

n
i+1)|Ftn

i
] at t = tni and the value 0 at time t = tni+1. Now consider

the event

A =
{

IE
[
g(Xn

i , X
n
i+1)

∣∣ Ftn
i

]
≥ ψ(µ)/2

}
. (3.2.13)

¿From the above continuity, on A there exist a stopping time tni ≤ τ ≤ tni+1 and a Fτ

measurable variable X such that

IE
[
g(X,Xn

i+1)
∣∣ Fτ

]
= ψ(µ)/2 (3.2.14)
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and X is a variable which minimizes this expression among Fτ measurable variables. By

applying (3.2.12) to the variable g(X,Xn
i+1), we deduce from (3.2.9) that on A,

g(X,Xn
i+1) = ψ(µ)/2 +O(

√
νn

i ) (3.2.15)

in the spaces ILq for the probability IP conditioned on Ftn
i
. On the other hand apply

(3.2.12) to g′0(X,X
n
i+1); its conditional mean is zero (since X is solution of a variational

problem), so we deduce that

g′0(X,X
n
i+1) = O(

√
νn

i ). (3.2.16)

The sets {g(x) = ψ(µ)/2} and {g′0(x) = 0} are disjoint, so if νn
i is less than some constant

number, there is a contradiction between (3.2.15) and (3.2.16), so IP[A] = 0 and therefore

IE
[
g(Xn

i , X
n
i+1)

∣∣ Ftn
i

]
< ψ(µ)/2 (3.2.17)

almost surely. By applying (3.2.12) to g(Xn
i , X

n
i+1) with τ = tni , we obtain

IP
[
δ(Xn

i , X
n
i+1) ≥ µ

∣∣ Ftn
i

]
= IP

[
g(Xn

i , X
n
i+1) ≥ ψ(µ)

∣∣ Ftn
i

]
≤ IP

[
g(Xn

i , X
n
i+1)− IE[g(Xn

i , X
n
i+1)|Ftn

i
] ≥ ψ(µ)/2

∣∣∣ Ftn
i

]
≤ C

(
νn

i

)2
. (3.2.18)

Apply also (3.2.12) to g′0(X
n
i , X

n
i+1); from (3.2.2) we get

IE
[∣∣g′0(Xn

i , X
n
i+1)

∣∣2 ∣∣∣ Ftn
i

]
≤ νn

i (3.2.19)

and

IE
[∣∣g′0(Xn

i , X
n
i+1)

∣∣4 ∣∣∣ Ftn
i

]
≤ C

(
νn

i

)2
. (3.2.20)

On {δ(x) < µ}, we have

∣∣g′0(x)∣∣2 =
∣∣ψ′(δ(x))∣∣2 =

sin2
(√
Kδ(x)

)
K

(3.2.21)

and

g(x) =
2
K

sin2
(√Kδ(x)

2

)
≤ 1

2

∣∣g′0(x)∣∣2 + C
∣∣g′0(x)∣∣4. (3.2.22)
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Thus

IE
[
g(Xn

i , X
n
i+1)

∣∣ Ftn
i

]
≤ 1

2
IE

[∣∣g′0(Xn
i , X

n
i+1)

∣∣2 ∣∣∣ Ftn
i

]
+ CIE

[∣∣g′0(Xn
i , X

n
i+1)

∣∣4 ∣∣∣ Ftn
i

]
+ CIP

[
δ(Xn

i , X
n
i+1) ≥ µ

∣∣∣ Ftn
i

]
≤ νn

i

2
+ C

(
νn

i

)2 (3.2.23)

from (3.2.18), (3.2.19) and (3.2.20). The estimate (3.2.11) is proved similarly by noticing

that g(x) ≤ C|g′0(x)|2 on {δ(x) < µ}.

§3.3 A stochastic implicit function theorem

¿From Lemmas 3.2.2 and 3.2.3, we know that if Xn
i+1 is in D(V ) and DXn

i+1 is not

too large, then Xn
i is uniquely defined by (3.1.10) and the distance between Xn

i and Xn
i+1

is estimated by (3.2.10) and (3.2.11); moreover

IE
[
g′0(X

n
i , X

n
i+1)

∣∣ Ftn
i

]
= 0 (3.3.1)

and Xn
i depends continuously on the conditional law of Xn

i+1 given Ftn
i
. We still have to

prove that Xn
i is in D(V ) and to estimate DXn

i ; to this end, we need a stochastic implicit

function theorem.

Lemma 3.3.1. Suppose that Xn
i+1 is in D(V ). If IE[g(Xn

i , X
n
i+1)|Ftn

i
] is uniformly less

than some constant number, then Xn
i is in D(V ).

Proof. Let k be an integer; from Lemma 3.2.2, we know that there exists a constant C0 > 0

(not depending on k) such that on the subset

AC0
k =

{
(y1, . . . , yk);

1
k2

∑
j,l

g(yj , yl) < C0

}
(3.3.2)

of V k, the relation ∑
j

g
(
β0(y1, . . . , yk), yj

)
= inf

x∈V

∑
j

g(x, yj) (3.3.3)

defines a unique point β0(y1, . . . , yk). Moreover from the classical implicit function theo-

rem, and using the estimates of Lemma 3.2.1, this function is smooth and locally

δ
(
β0(y), β0(y)

)
≤ C

k

k∑
j=1

δ(yj , yj) (3.3.4)
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where C is a constant number which does not depend on k. Now let φ be a smooth real

function defined on [0,∞) such that φ(z) = 1 if z ≤ C0/2, φ(z) = 0 if z ≥ C0; consider V

as a submanifold of some Euclidean space IRr and define on V k the IRr-valued function

β(y) = β0(y)φ
( 1
k2

∑
j,l

g(yj , yl)
)

+
1
k

∑
j

yj

(
1− φ

( 1
k2

∑
j,l

g(yj , yl)
))

. (3.3.5)

Then ∣∣β(y)− β(y)
∣∣ ≤ C

k

k∑
j=1

δ(yj , yj) (3.3.6)

for some C not depending on k; moreover on AC0/2
k , β is V -valued and satisfies (3.3.3). Now

enlarge the probability space into Ω× ΩIN and let (Wt,W
1
t , . . .) be the canonical process,

the components of which are independent standard Wiener processes. If (ω, ω1, . . .) is a

generic element of this space, denote

ωj(t) = ω(t ∧ tni ) + ωj(t ∨ tni )− ωj(tni ) (3.3.7)

and

Y k = β
(
Xn

i+1(ω
1), . . . , Xn

i+1(ω
k)

)
. (3.3.8)

For almost each fixed (ω1, . . .), the variables Xn
i+1(ω

l) are in D(V ) so, since β satisfies

(3.3.6), the variables Y k are in D(IRr) and

∣∣Dj
tY

k
∣∣ ≤ C

k

k∑
l=1

∣∣Dj
tX

n
i+1(ω

l)
∣∣ (3.3.9)

for t < tni , so that

IE
[∫ tn

i

0

∣∣Dj
tY

k
∣∣2dt ∣∣∣ W 1, . . .

]
≤ C

k

k∑
l=1

IE
[∫ tn

i

0

∣∣Dj
tX

n
i+1(ω

l)
∣∣2dt ∣∣∣ W 1, . . .

]
. (3.3.10)

Moreover from the law of large numbers and the continuity property of Lemma 3.2.2, Y k

converges almost surely on Ω× ΩIN to Xn
i as k →∞ and

lim
k→∞

1
k

k∑
l=1

IE
[∫ tn

i

0

∣∣Dj
tX

n
i+1(ω

l)
∣∣2dt ∣∣∣ W 1, . . .

]
= IE

[∫ tn
i

0

∣∣Dj
tX

n
i+1

∣∣2dt ∣∣∣ Ftn
i

]
(3.3.11)

almost surely; so let us fix (ω1, . . .) at a point at which these two convergences hold almost

surely on Ω; from (3.3.10) and (3.3.11), DY k is bounded in IL2 so we deduce from Lemma

1.3.2 that Xn
i is in D(V ).
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Lemma 3.3.2. Under the assumptions of Lemma 3.3.1,

|Dj
tX

n
i | ≤

(
1 +KIE

[
g(Xn

i , X
n
i+1)

∣∣ Ftn
i

]
+ CIE

[
g2(Xn

i , X
n
i+1)

∣∣ Ftn
i

])
IE

[
|Dj

tX
n
i+1|

∣∣ Ftn
i

]
(3.3.12)

for t ≤ tni .

Proof. When we consider V as a submanifold of IRr, each tangent space TxV becomes

canonically isomorphic to a vectorial subspace of IRr; in particular the function h = g′0 can

be considered as IRr-valued and (3.3.1) can be viewed as an equality in IRr; since Xn
i and

Xn
i+1 are in D(V ) we can differentiate this relation (we apply the properties of the Wiener

derivative applied to a conditional expectation) and obtain

IE
[
h′0(X

n
i , X

n
i+1)〈D

j
tX

n
i 〉+ h′1(X

n
i , X

n
i+1)〈D

j
tX

n
i+1〉

∣∣∣ Ftn
i

]
= 0 (3.3.13)

for t ≤ tni ; this relation is again in IRr. Now take the scalar product of (3.3.13) with Dj
tX

n
i

which is Ftn
i

measurable; by replacing h by g′0, we get

IE
[
g′′00(X

n
i , X

n
i+1)〈D

j
tX

n
i , D

j
tX

n
i 〉

∣∣ Ftn
i

]
= −IE

[
g′′01(X

n
i , X

n
i+1)〈D

j
tX

n
i , D

j
tX

n
i+1〉

∣∣ Ftn
i

]
. (3.3.14)

¿From the estimates of Lemma 3.2.1, we easily deduce (3.3.12).

§3.4 End of the proof

We will first prove the weak existence of the martingale; more precisely, let C(V )

be the space of V -valued continuous functions defined on [0, 1], and consider the product

space Ω× C(V ) and its canonical process (Wt,Mt); variables defined on Ω such as L can

also be considered as variables defined on Ω× C(V ).

Lemma 3.4.1. On Ω×C(V ) there exists a probability IP0 such that if Gt is the completed

right-continuous filtration generated by (Wt,Mt), then Wt is a Gt Wiener process and Mt

is a Gt martingale satisfying M1 = L and (3.1.7).

Proof. Suppose that Xn
i+1 is in D(V ) and( m∑

j=1

IE
[
|DtX

n
i+1|

∣∣ Ft

]2)1/2

≤ ρn
i+1 (3.4.1)
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(we have assumed that this condition is satisfied for i+ 1 = n with ρn
n = ρ). Then (3.2.9)

is satisfied with

νn
i =

(
ρn

i+1

)2(
tni+1 − tni

)
. (3.4.2)

In particular, from Lemma 3.2.3,

IE
[
g(Xn

i , X
n
i+1)

∣∣ Ftn
i

]
≤

(
ρn

i+1

)2

2
(
tni+1 − tni

)
+ C

(
ρn

i+1

)4(
tni+1 − tni

)2
. (3.4.3)

For any constant number C0, if ρn
i+1 ≤ C0 and if n is large enough, then the expression

of (3.4.3) is small enough and we can apply the previous lemmas; from Lemmas 3.3.1 and

3.3.2, Xn
i is in D(V ) and satisfies an estimate similar to (3.4.1) with

ρn
i = ρn

i+1

[
1 +

K

2
(
ρn

i+1

)2(
tni+1 − tni

)
+ C

(
ρn

i+1

)4(
tni+1 − tni

)2
]
. (3.4.4)

By comparing with the ordinary backward equation

φ̇s = −K
2
φ3

s, s ≤ 1 φ1 = ρ, (3.4.5)

which explodes at time 1 − 1/(Kρ2) if K > 0, it appears that ρn
i remains asymptotically

bounded if the assumption ρ < 1/
√
K holds. More precisely, we have

ρn
i ≤

ρ√
1−Kρ2(1− tni )

+ o(1) (3.4.6)

where the ‘o(1)’ term tends to 0 as n→∞ uniformly in i. In particular,

IE
[
g(Xn

i , X
n
i+1)

∣∣ Ftn
i

]
≤

ρ2
(
tni+1 − tni

)
2
(
1−K(1− tni )ρ2

) + o
(
tni+1 − tni

)
(3.4.7)

and

IE
[
g2(Xn

i , X
n
i+1)

∣∣ Ftn
i

]
≤ C

(
tni+1 − tni

)2
. (3.4.8)

Now let h be a bounded smooth function with bounded derivatives defined on V ; by

applying the Taylor formula to h at Xn
i and by using the inverse exponential function at

Xn
i which is defined on a neighbourhood of Xn

i , we obtain

h(Xn
i+1) =h(Xn

i ) + h′(Xn
i )〈exp−1

Xn
i
Xn

i+1〉

+
1
2
h′′(Xn

i )〈exp−1
Xn

i
Xn

i+1, exp−1
Xn

i
Xn

i+1〉+O
(
| exp−1

Xn
i
Xn

i+1|3
)
. (3.4.9)
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Since

exp−1
Xn

i
Xn

i+1 = g′0(X
n
i , X

n
i+1) +O

(
g3/2(Xn

i , X
n
i+1)

)
, (3.4.10)

by taking the conditional expectation in (3.4.9), by using (3.3.1) and (3.4.8), we deduce

IE
[
h(Xn

i+1)
∣∣ Ftn

i

]
=h(Xn

i ) +
1
2
IE

[
h′′(Xn

i )〈g′0(Xn
i , X

n
i+1), g

′
0(X

n
i , X

n
i+1)〉

∣∣∣ Ftn
i

]
+O

((
tni+1 − tni

)3/2
)
. (3.4.11)

If λh(x) is the smallest eigenvalue of h′′(x) and if λ−h = (−λh) ∨ 0, we deduce

IE
[
h(Xn

i+1)
∣∣ Ftn

i

]
≥ h(Xn

i ) +
1
2
λh(Xn

i )IE
[∣∣g′0(Xn

i , X
n
i+1)

∣∣2 ∣∣ Ftn
i

]
− C

(
tni+1 − tni

)3/2

≥ h(Xn
i )− Cλ−h (Xn

i )
(
tni+1 − tni

)
− C

(
tni+1 − tni

)3/2
. (3.4.12)

Now consider the step process Mn
t defined in §3.1, which is Xn

i on the time interval

[tni , t
n
i+1); we want to prove that its law is C-tight. We deduce from (3.4.12) that

IE
[
h(Mn

t )
∣∣ Fs

]
≥ h(Mn

s )− C

∫ t

s

λ−h (Mn
u )du− C

√
εn(t− s) (3.4.13)

for s ≤ t in the subdivision (tn. ) and where we recall that εn is the step size of the

subdivision. On the other hand if in Lemma 3.2.3 we replace tni by another time s, we see

that there exist Fs measurable variables Xs,t such that

IE
[
g2(Xs,t,M

n
t )

∣∣ Fs

]
≤ C(t− s)2, IE

[
g(Xs,t,M

n
t )

∣∣ Fs

]
≤ C(t− s). (3.4.14)

By applying (3.4.13) to the function x1 7→ g(x0, x1), we obtain

IE
[
g(Xs,t,M

n
t )− g(Xs,t,M

n
s )

∣∣ Fs

]
≥ −C(t− s) (3.4.15)

so by substracting these two estimates,

g(Xs,t,M
n
s ) ≤ C(t− s). (3.4.16)

Since δ ∧ 1 ≤ C
√
g, we deduce from (3.4.14) and (3.4.16) estimates on δ(Xs,t,M

n
s ) and

δ(Xs,t,M
n
t ); from the triangle inequality, we get for s and t in the subdivision

IE
[
δ4(Mn

s ,M
n
t ) ∧ 1

∣∣ Fs

]
≤ C(t− s)2. (3.4.17)
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Moreover the law of Mn
1 = L is fixed and therefore tight, so the C-tightness of the process

Mn is proved. This implies that the law of (W,Mn) is also C-tight, so let us consider

the limit IP0 of some subsequence; for any real bounded measurable function φ defined on

Ω×C(V ) which is continuous with respect to the second variable, the mean of φ(W,Mn)

converges (for the subsequence) to the IP0-expectation of φ(W,M) (apply [7]). In partic-

ular, since Mn
1 = L, we also have M1 = L; it is also easy to check that Wt is a Gt Wiener

process; on the other hand, by multiplying both sides of (3.4.13) by any continuous func-

tion of (Wu,Mu;u ≤ s), by taking the expectation and by taking the limit as n→∞, we

prove that

h(Mt)− C

∫ t

0

λ−h (Ms)ds

is a Gt submartingale. Thus, from the Darling definition [2] of martingales, the process Mt

is a Gt martingale. Since g ∼ δ2/2 in the neighbourhood of the diagonal, the quadratic

variation of Mn
t is estimated from (3.4.7) and by taking the limit, we obtain (3.1.7).

We finish the proof of Theorem 3.1.1 in two steps; we first prove that the process Mt

obtained in Lemma 3.4.1 is adapted to the filtration Ft of Wt so that it can be realized on

Ω; then we check that Mt is in D?(V ).

Proof of the strong existence. This will follow from the uniqueness theorem of §1; the

Watanabe-Yamada method for proving strong existence for stochastic differential equations

(see Chapter 8 of [15]) can also be applied in our context. On the space Ω×C(V )×C(V )

with canonical process (W,M1,M2), consider the probability IP1 defined by

IEIP1

[
f(W )φ1(M1)φ2(M2)

]
= IEIP

[
f(W )IEIP0

[
φ1(M)

∣∣ W ]
IEIP0

[
φ2(M)

∣∣ W ]]
(3.4.18)

for bounded measurable functionals f , φ1, φ2. Let G1
t be the filtration generated by the

process (W,M1,M2); one verifies that under IP1, (W,M1) and (W,M2) have law IP0, that

Wt is a G1
t Wiener process, that M1 and M2 are conditionally independent given W , so

that M1
t and M2

t are G1
t martingales with value L at final time; since they satisfy (3.1.7),

we deduce from Theorem 2.2.1 that M1 = M2. Thus conditionally on W = ω, M1 and

M2 are independent and almost surely equal, so are equal to some M(ω). Now M is

measurable with respect to the σ-field of W and Mt is independent from future increments
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of W , so Mt is Ft adapted; thus it is a Ft martingale defined on Ω and converging to L.

Proof of the regularity. By using elementary results concerning weak and stable conver-

gences (see [7]), we can deduce from the previous proof that Mn converges uniformly in

probability to M . Thus in order to prove that Mt is in D?(V ) it is sufficient to prove

(1.3.6) for Y n = Mn, that is

lim sup
n→∞

∑
j

IE
∫ 1

0

sup
i

∣∣Dj
tX

n
i

∣∣2dt <∞. (3.4.19)

But we deduce from Lemma 3.3.2 that there exists a constant C > 0 such that for t fixed,

the process exp(Ctni )|Dj
tX

n
i | is a discrete-time submartingale; from Doob’s inequality, the

left-hand side of (3.4.19) is estimated by 4e2C‖L‖2
D.

4. The existence on small convex domains

We now prove that if ∆ is an open subset of V satisfying some assumption, then one

can construct ∆-valued martingales in the non differentiable case; this can in particular be

applied to manifolds with non-positive curvature. As in previous section, we suppose that

the probability space is a Wiener space. If V is embedded in a Euclidean space IRr, the

spaces ILq(∆) are defined to be the subsets of the spaces ILq(IRr) consisting of ∆-valued

variables, with the induced topology (this does not depend on the embedding).

Theorem 4.1. Suppose that Ω is a Wiener probability space. For x ∈ V , let κ(x) be the

smallest non-negative number dominating the sectional curvatures at x. Let 1 < p ≤ ∞

and 1 ≤ q < ∞ be such that 1/p + 1/q = 1. Let ∆ be an open connected and simply

connected subset of V and suppose that there exists a smooth positive function f such

that 0 < c0 < f < c1 on ∆, 0 < f < c0 on V \ ∆ and f ′′ + pκf ≤ 0 on ∆ (the case

p = ∞ is possible only when κ ≡ 0 on ∆). Then there exists a unique continuous function

L 7→ (Mt) defined on ILq(∆), with values in the space of ∆-valued continuous processes

endowed with the uniform convergence in probability, and such that

(a) for any L, Mt is a martingale converging to L;

(b) if L is in S(∆), then 〈〈M〉〉∞ is bounded.
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Example. The regular geodesic balls of [9] satisfy the assumptions of the theorem for some

p: if O is the centre, use the function x 7→ cos(
√
Kpδ(O, x)). Thus the existence theorem

of [9] can be deduced from Theorem 4.1.

Remark. We have stated the uniqueness of a continuous function L 7→ (Mt) satisfying (a)

and (b), but we do not know whether Mt is the unique martingale converging to L.

Proof. First note that one can apply Theorem 2.1.3 to ∆β = {f > β} for any β > c0,

so that any martingale with bounded quadratic variation converging to a variable in ∆β

lives in ∆β ; moreover from Proposition 2.1.2, any ∆-valued martingale is in Epκ/2; more

precisely, the variables

IE
[
exp

p

2

∫ ∞

t

κ(Ms)d〈〈M〉〉s
∣∣∣ Ft

]
are uniformly bounded by some constant number. Note also that two points of ∆ are

linked by at least one ∆-valued geodesic (one can prove that if x0 is a point of ∆, the set

of points which are linked to x0 by a ∆-valued geodesic segment is both open and closed

in ∆; to this end we use the fact that if the end points of a ∆-valued geodesic are in ∆,

then the geodesic is ∆-valued); one can also prove from comparison theorems that there

do not exist conjugate points on a ∆-valued geodesic; since ∆ is simply connected, one

can deduce from the homotopy lemma (see Lemma 2.6.4 of [10]) that two points of ∆ are

linked by exactly one geodesic; moreover this geodesic depends smoothly on its end points;

in particular, ∆ is diffeomorphic to a star-shaped open subset of IRd (use the exponential

function at some point), so S(∆) is dense in ILq(∆). After these geometrical preliminaries,

let us prove the theorem. First note that the uniqueness is a consequence of Theorem 2.2.1

and of the density of S(∆) in ILq(∆). For the existence, let L be a variable in ILq(∆); one

can find a sequence Ln of functionals of S(∆) such that δ
(
Ln, L

)
converges to 0 in ILq and

f(Ln) > βn for some βn > c0; for each n there exists a ∆-valued martingale Mn
t , t ≥ tn

with bounded quadratic variation and converging to Ln; the process Mn
t is in D?(V ) and

by applying Theorem 2.3.1 to perturbations on the Wiener process, we can check that

Sn
s,t =

∣∣DsM
n
t

∣∣ exp
1
2

∫ t

s

κ(Mn
u )d〈〈Mn〉〉u, (4.1)

t ≥ s, is a submartingale; moreover for any fixed n, the derivatives DsM
n
∞ are bounded
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and the variables

IE
[
exp

1
2

∫ ∞

t

κ(Mn
u )d〈〈Mn〉〉u

∣∣∣ Ft

]
are bounded so DsM

n
t is bounded. Thus Mn

t can be defined on the whole time interval

(tn = 0); if indeed tn > 0, since DsM
n
tn

is bounded, we deduce that Mn
t can always be

extended to an interval [tn − C,∞]. For each m and n, let Lm,n,α, 0 ≤ α ≤ 1 be the

geodesic interpolation between Lm and Ln; then α 7→ Lm,n,α is continuous into S(∆), we

can construct the martingales Mm,n,α
t converging to Lm,n,α, apply Theorem 2.3.1 to them

and estimate the Jacobi field ∂Mm,n,α
t /∂α for any 0 ≤ α ≤ 1. Since these martingales are

bounded in Epκ/2, we deduce that

IP
[
sup

t
δ(Mm

t ,M
n
t ) > u

]
≤ C

u
IE

[
δ(Lm, Ln)q

]1/q

. (4.2)

Thus Mn
t has in ∆ a uniform limit in probability and this limit is a martingale converging

to L; from Theorem 2.1.3, Mt is ∆-valued. The continuity of the map L 7→ (Mt) also

follows from (4.2) which can be extended to any sequence of ∆-valued variables Ln.

The continuity property of Theorem 4.1 can be improved by the

Proposition 4.2. Under the assumptions of Theorem 4.1, let (A, d) be a metric space

and let Lα, α ∈ A, be a family of ∆-valued variables such that almost surely, α 7→ Lα is

uniformly continuous; suppose also that supα δ(O,Lα) is in ILq for some (or any) O. For

any α, let Mα
t be the martingale converging to Lα constructed in Theorem 4.1; then there

is a version of (Mα
t ) which is almost surely continuous on A× [0,∞].

Proof. We deduce from (4.2) that

δ(Mα
0 ,M

β
0 ) ≤ CIE

[
δ(Lα, Lβ)q

]1/q
. (4.3)

Similarly, by working conditionally on Ft, we can check that

δ(Mα
t ,M

β
t ) ≤ CIE

[
δ(Lα, Lβ)q

∣∣ Ft

]1/q
. (4.4)

Thus

ess sup
d(α,β)≤ε

sup
t
δ(Mα

t ,M
β
t ) ≤ C sup

t
IE

[
sup

d(α,β)≤ε

δ(Lα, Lβ)q
∣∣∣ Ft

]1/q

(4.5)
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and therefore, by using an inequality for submartingales, for η > 0,

IP
[
ess sup
d(α,β)≤ε

sup
t
δ(Mα

t ,M
β
t ) > η

]
≤ IP

[
sup

t
IE

[
sup

d(α,β)≤ε

δ(Lα, Lβ)q
∣∣ Ft

]
>

ηq

Cq

]
≤ Cq

ηq
IE

[
sup

d(α,β)≤ε

δ(Lα, Lβ)q
]
. (4.6)

Take the limit as ε ↓ 0 on both sides of this inequality; the right-hand side converges to 0

for any η > 0, so we deduce

lim
ε→0

ess sup
d(α,β)≤ε

sup
t
δ(Mα

t ,M
β
t ) = 0 (4.7)

almost surely. If we restrict ourselves to rational values of α, Mα
t is almost surely continu-

ous with respect to α uniformly in (t, α), so it is continuous with respect to (t, α); for real

values of α, if we choose for (Mα
t , 0 ≤ t ≤ ∞) a measurable accumulation point of (Mβ

t ),

β rational tending to α, we obtain a version satisfying the condition of the proposition.

If ∆ is not simply connected, we can consider its universal cover; for instance, if V

is connected and its sectional curvatures are non-positive, then its universal cover Ṽ is

a Cartan-Hadamard manifold, so we can apply Theorem 4.1 to ∆ = Ṽ with p = ∞; if

L is a variable of IL1(V ), we can lift it into a variable of IL1(Ṽ ), construct a Ṽ -valued

martingale and by projection, prove the existence of a V -valued martingale converging to

L. If V is not simply connected, the lifting is not unique and consequently, the martingale

is not unique. Actually, we have a more precise existence theorem; by using the notion of

homotopy defined in §2.2, we can prove the

Proposition 4.3. Let ∆ be a connected subset of V and suppose that its universal cover

satisfies the conditions of Theorem 4.1. Let Xt be a ∆-valued Ft adapted continuous

process converging almost surely to L. Suppose that supt δ(O,Xt) is in ILq. Then there

exists a ∆-valued martingale converging to L and homotopic to X.

Proof. Consider a continuous lifting X̃t of Xt in ∆̃; we can construct a family of ∆̃-valued

martingales Ỹ α
t , 0 ≤ α ≤ ∞, converging to X̃α, and from Proposition 4.2, we can choose

a version which is almost surely continuous with respect to (t, α); note that Ỹ α
t = X̃α for
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t ≥ α. Let Y α
t be the projection of Ỹ α

t on ∆ if t ≤ α, and put Y α
t = Xt for t ≥ α; put also

Mt = Y∞t ; then Mt is martingale converging to L and Y α is a homotopy path from X to

M .

5. Application to partial differential equations

We want to apply previous results to a smooth Markovian case. If one is given a

Markov transition kernel, one has to realize it on a Wiener space; when this is possible,

such a realization is not unique. In this section, we suppose that we have constructed

a realization satisfying some assumptions and we deduce the existence of a probabilistic

solution to the heat equation. Then we will consider the Dirichlet problem.

Theorem 5.1. On our Wiener space, consider the stochastic differential equation

dXt = β(t,Xt)dt+ σ(t,Xt) ◦ dWt (5.1)

on a smooth submanifold U of some Euclidean space, for smooth coefficients β and σ; we

suppose that when (5.1) is written in Itô’s form in the Euclidean space, the coefficients are

uniformly Lipschitz and have at most linear growth. We denote by Xs,x
t , s ≤ t ≤ 0 the

stochastic flow associated to (5.1). Let φ be a C1 Lipschitz function from U into V . We

suppose that

sup
x

IE
∣∣∣φ′(Xt,x

0 )
∂Xt,x

0

∂x
σ(t, x)

∣∣∣ ≤ ρt (5.2)

for some function ρt such that
∫ 0

−∞ ρ2
tdt is finite and less than 1/K. Then there exists

a unique measurable V -valued function f defined on (−∞, 0] × U such that f(0, .) = φ

and for any (s, x), f(t,Xs,x
t ), s ≤ t ≤ 0 is a V -valued martingale with bounded quadratic

variation.

Proof. It follows from the study of (5.1) (see [12]) that φ(Xs,x
0 ) is in D(V ) and that

Dtφ(Xs,x
0 ) = φ′(Xt,y

0 )
∂Xt,y

0

∂y
σ(t, y)

∣∣∣∣∣
y=Xs,x

t

(5.3)

for s ≤ t ≤ 0. Thus from (5.2), we can apply Theorem 3.1.1 and f(s, x) is necessarily the

value at time s of the martingale constructed in this theorem. More precisely, if S = (ti)
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is a subdivision of (−∞, 0], for t ≥ s and ti ≤ t < ti+1, we denote by MS,s,x
t the point

at which the function IE[g(x,MS,s,x
ti+1

)
∣∣ Ft] takes its minimum: from the study of §3, this

point is unique when

ε(S) = sup
i

∫ tn
i+1

tn
i

ρ2
tdt (5.4)

is small enough. Then MS,s,x
t converges, as ε(S) tends to 0, to the martingale Ms,x

t

with limit φ(Xs,x
0 ) and f(s, x) is defined to be Ms,x

s ; it follows that f is measurable and

f(0, .) = φ. Moreover, using the Markov property,

MS,s,x
t = M

S,t,Xs,x
t

t (5.5)

so, by taking the limit,

Ms,x
t = f(t,Xs,x

t ). (5.6)

Thus f(t,Xs,x
t ) is a martingale with bounded quadratic variation.

In the previous theorem f is only measurable; however a better regularity result can

be checked from Theorem 2.3.1.

Proposition 5.2. Under the assumptions of Theorem 5.1, suppose moreover that

sup
t

IE sup
x

∣∣∣φ′(Xt,x
0 )

∂Xt,x
0

∂x

∣∣∣ <∞. (5.7)

Then the function f is Lipschitz with respect to x uniformly in (t, x) and is continuous

with respect to (t, x).

Proof. Fix a time t and two points x0, x1 of U . Let x(α), 0 ≤ α ≤ 1 be a minimiz-

ing geodesic in U between these two points (for the Riemannian metric induced by the

Euclidean metric). Then φ(Xt,x(α)
0 ) is smooth with respect to α and from (5.7), we have

IE sup
α

∣∣∣∂φ(
X

t,x(α)
0

)
∂α

∣∣∣ ≤ CδU (x0, x1). (5.8)

We deduce that f is uniformly Lipschitz with respect to x by applying Theorem 2.3.1.

We still have to prove that f is continuous with respect to t at any (t0, x0); using the
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Lipschitz continuity which has already been proved, the set C(t0) of points x such that f

is continuous at (t0, x) is closed; for any s < t0, the process f(t,Xs,x0
t ) is almost surely

continuous at t0 (it is a martingale); the process Xs,x0
t is also continuous. Now use

δ
(
f
(
t,Xs,x0

t0

)
, f

(
t0, X

s,x0
t0

))
≤ δ

(
f
(
t,Xs,x0

t0

)
, f

(
t,Xs,x0

t

))
+ δ

(
f(

(
t,Xs,x0

t

)
, f

(
t0, X

s,x0
t0

))
.

(5.9)

We deduce from the previous remarks that the two terms of the right-hand side converge

to 0 as t → t0, so f(t,Xs,x0
t0 ) converges almost surely to f(t0, X

s,x0
t0 ); thus C(t0) contains

the closed support of the law of Xs,x0
t0 ; by letting s ↑ t0, we deduce that it contains x0.

We can also give (as in [9] for regular geodesic balls) a probabilistic solution to the

Dirichlet problem in a small convex domain. The framework which was set in the intro-

duction (the exit problem) is a particular case of the following one.

Theorem 5.3. On a state space U , consider a time-homogeneous Markov process which

can be realized as a stochastic flow Xx
t defined on our Wiener space. Let ∆ be a domain

satisfying the assumptions of Theorem 4.1 and let φ(Xx) be a bounded ∆-valued variable

which is measurable with respect to the asymptotic σ-field of the Markov process. Then

there exists a measurable function f from U to ∆ such that for any x, f(Xx
t ) is a martingale

converging to φ(Xx).

Proof. Theorem 4.1 enables the construction of a map Ψ defined on the set of ∆-valued

Wiener functionals L such that Ψ(L) is a martingale with final value L; denote by Ψ0(L)

the value at time 0 of this martingale; if L is decomposed as

L = L
(
Ws, s ≤ t;Ws −Wt, s ≥ t

)
(5.10)

then one can check that the value at time t of this martingale is almost surely

Mt = Ψ0

(
L(Ws, s ≤ t; .)

)
. (5.11)

In the framework of the theorem, define

f(x) = Ψ0

(
φ ◦Xx

)
. (5.12)
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Then f is measurable and using the Markov property for the flow Xx
t , the martingale with

final value φ(Xx) is from (5.11)

Mx
t = Ψ0

(
φ ◦XXx

t
)

= f(Xx
t ). (5.13)

The only regularity on f proclaimed in Theorem 5.3 is the measurability; analytical

methods may provide better regularity results but we have to notice that our framework

is more general; for the continuity, one can try to use coupling methods as in [9]. If ∆ is

not simply connected, we can use its universal cover as in §4; for instance, we can solve the

Dirichlet problem for connected manifolds with non-positive sectional curvatures. Note

also that the method of Proposition 4.3 can also be used to solve the Dirichlet problem;

choose a V -valued function g such that g(Xx
t ) converges to φ(Xx) as t→∞; then consider

the family of martingales with limit g(Xx
t ) and let t tend to infinity; one can try to prove

that this procedure provides a solution in the homotopy class of g.
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