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Abstract

We consider a process Yt which is the solution of a stochastic dif-
ferential equation driven by a Lévy process with an initial condition
Y0 = y0. We assume conditions under which Yt has a smooth density
for any t > 0. We consider a point y that the process can reach with
a finite number of jumps from y0, and prove that, as t tends to 0,
the density at this point is of order tΓ for some Γ = Γ(y0, y). Some
applications to the potential analysis of the process are given.

Résumé

Nous considérons un processus Yt qui est solution d’une équation
différentielle stochastique conduite par un processus de Lévy avec con-
dition initiale Y0 = y0. Nous nous plaçons sous des hypothèses per-
mettant d’assurer que Yt a une densité régulière pour tout t > 0. Nous
considérons un point y que le processus peut atteindre en un nombre
fini de sauts depuis y0, et démontrons que, lorsque t tend vers 0, la
densité en ce point est d’ordre tΓ pour un Γ = Γ(y0, y). Quelques
applications à la théorie du potentiel sont données.
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1 Introduction

Consider a Markov process Yt with jumps, without continuous diffusion and
with a deterministic initial condition Y0 = y0; some sets of conditions are
known to be sufficient for the existence of a smooth density y 7→ p(t, y0, y)
for Yt, see [2, 1, 8, 10]. These results are proved by extending the techniques
which were initially worked out for continuous diffusions (Malliavin’s calcu-
lus); they can also yield estimation of the density in small time t → 0, but
they require some regularity on the Lévy measure of the process. Up to now,
the more precise results were only obtained when this measure has a smooth
density; in [9], the density at points y 6= y0 that the process can reach with
one jump from y0 is studied, and in [7], other points y 6= y0 are studied, but
only in the case of processes with finite variation. In [13], we have worked
out a method for proving the existence of a smooth density without assum-
ing smoothness of the Lévy measure; the basis of this method is the duality
formula of [11, 12]. The aim of this article is to study, under the framework
of [13], the behaviour in small time of the density at y = y0, and at points
y which can be reached with a finite number of jumps from y0. In contrast
with previous works [9, 7], the Lévy measure is allowed to be singular; for
instance, it may have a countable support. We prove that, under some as-
sumptions, the density p(t, y0, y) is of order tΓ for some Γ = Γ(y0, y), but we
do not obtain a precise estimation p(t, y0, y) ∼ CtΓ as in [9, 7]; actually, this
type of estimation probably fails to hold under our assumptions. This study
is an improvement and an extension of some of the results which we have
proved for real-valued Lévy processes in [14].

Let us suppose that Yt is a d-dimensional Markov process which is the
solution of a stochastic differential equation

dYt = b(Yt)dt + a(Yt−, dXt), Y0 = y0

driven by a Lévy process Xt (a process with stationary independent incre-
ments and with value 0 at time t = 0); we do not consider the case where Yt

contains a continuous diffusion part, so we suppose that Xt has no Brownian
part. Under the assumptions of [13], we know that Yt admits a smooth tran-
sition density p(t, y0, y) for t > 0. In the particular case Yt = y0 + Xt where
Xt is a non-degenerate symmetric β-stable process (for 0 < β < 2), then

p(t, y0, y) ≤ p(t, y0, y0) = C t−d/β.
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In Section 3, we derive more general conditions under which these two re-
lations hold approximately as t → 0; more precisely, the scaling condition
satisfied by β-stable processes is replaced by an approximate scaling condi-
tion of index β, and we prove that p(t, y0, y) is at most of order t−d/β as
t → 0, and is exactly of order t−d/β on the diagonal {y = y0}. In particular,
one can deduce from our result that points are polar if d ≥ 2 or β ≤ 1, and
that they are regular for themselves otherwise.

In Section 4, we estimate more precisely the density p(t, y0, y) for y in the
set of points which are ∆-accessible from y0; this set is defined as follows.
Consider the maps A0(y0) = y0 and

An+1(y0, x1, . . . , xn+1) = An(y0, x1, . . . , xn) + a(An(y0, x1, . . . , xn), xn+1),

let µ be the Lévy measure of X, and let Sn = Sn(y0) be the support of the
image of µ⊗n by the map x 7→ An(y0, x); this is the set of points which are
accessible with n jumps from y0, and the set of ∆-accessible points is defined
as the union of these Sn. If y is such a point, we prove that under some
assumptions, the density p(t, y0, y) is of order tΓ as t → 0, where Γ = Γ(y0, y)
depends on the jumps which drive Yt from y0 to y. If d = 1 and β > 1, we
deduce an estimate for the hitting times of points.

The behaviour at points y which are not ∆-accessible was considered
in [14] in the case of real-valued Lévy processes; these points were called
asymptotically ∆-accessible when they are in the closure of

⋃
n Sn, and ∆-

inaccessible otherwise; in particular, the study of ∆-inaccessible points re-
quires large deviations techniques (as for continuous diffusions). However,
we do not consider these points here; we only prove that p(t, y0, y) = o(tn)
for any n.

2 Assumptions

In this section, we list the conditions which will be assumed in our results.
The constant numbers will be denoted by C or c, though they may vary
from line to line; the dependence on some parameter will be emphasized by
an index. The vectors will be identified to 1-column matrices, the transpose
will be denoted by a star, and the scalar product by a dot. The identity
matrix will be denoted by I.
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We first introduce a IRm valued Lévy process Xt without Brownian part;
its law can be characterized by a drift parameter χ ∈ IRm and a measure µ
on IRm \ {0} satisfying

∫
(|x|2 ∧ 1)µ(dx) < ∞,

through the Lévy-Khinchin formula

IE[eiw.Xt ] = exp
(
itw.χ + t

∫
(eiw.x − 1− iw.x1{|x|≤1})µ(dx)

)
. (1)

The measure µ is called the Lévy measure of the process Xt. We suppose
that the tail of µ at 0 satisfies the following approximate scaling and non-
degeneracy condition; there exists some 0 < β < 2 and positive c, C such
that for any ρ ≤ 1,

cρ2−βI ≤
∫

{|x|≤ρ}
xx?µ(dx) ≤ Cρ2−βI. (2)

Equivalently, this means that
∫

{|x|≤ρ}
(x.u)2µ(dx) ³ ρ2−β

uniformly for unit vectors u of IRm, where the symbol ³ means that the
quotient between the two sides is bounded below and above as ρ → 0; this
can also be written as

∫

{|x|≤ρ}
(x.w)2µ(dx) ³ ρ2−β|w|2 (3)

uniformly for w ∈ IRm \ {0}. This condition implies

∫

{|x|≤ρ}
|x|2µ(dx) ³ ρ2−β, (4)

which is equivalent to
µ{|x| > ρ} ³ ρ−β. (5)

Thus, if α > 0,

IP


∑

s≤t

|∆Xs|α < ∞

 = 1 ⇔

∫
(|x|α ∧ 1)µ(dx) < ∞⇔ α > β. (6)
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In particular, Xt has finite variation if and only if β < 1. Actually, the
approximate scaling condition (2) is not sufficient for our purpose in the case
β ≤ 1, so we now write the complete assumption about X.

Assumption H(X). There exists a 0 < β < 2 such that the following condi-
tions hold.

1. If 0 < β < 1, we suppose that

χ =
∫

{|x|≤1}
xµ(dx) (7)

and ∫

{|x|≤ρ}
(x.u)21{x.u>0}µ(dx) ³ ρ2−β (8)

as ρ → 0 uniformly for unit vectors u.

2. If β = 1, we assume (2) and

lim sup
ε→0

∣∣∣
∫

{ε<|x|≤1}
xµ(dx)

∣∣∣ < ∞. (9)

3. If 1 < β < 2, we only assume (2).

Remarks. These conditions will imply that Xt is of order t1/β as t → 0, and
that the law of Xt/t

1/β is not asymptotically supported by a strict closed
subset of IRm. In the case β < 1, the process Xt has finite variation; the
assumption (7) means that Xt is a pure jump process (it is the sum of its
jumps), and (8) is an enforcement of (2). Notice also that regularity is not
assumed for µ; for instance, it can be supported by a countable set.

Example. Let Xt be a β-stable process (0 < β < 2), so that the variables
X1 and Xt/t

1/β have the same law for any t > 0; from the Lévy-Khintchin
formula (1), this means that

∫
g(x)µ(dx) =

∫ ∞

0
dr

∫

Sd−1
σ(dz)r−1−βg(rz)

for any nonnegative function g and some finite measure σ on the sphere Sd−1,
and that

(1− β)χ =
∫

z σ(dz).
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Then our conditions H(X) are fulfilled provided that σ is not supported by
an hyperplane {z; z.u = 0} if β ≥ 1, and is not supported by a half space
{z; z.u ≥ 0} if β < 1. By looking at the result stated in Theorem 1 below
in the case Yt = Xt, it is not difficult to verify that this condition is actually
necessary; if σ is supported by an hyperplane, then Xt is supported by the
same hyperplane so has no density, and if σ is supported by a half space
with β < 1 (for instance if Xt is real-valued and non-decreasing), then Xt

is supported by the same half space, so the density, when it exists and is
continuous, is necessarily 0 at the initial point 0.

Then let a(y, x) and b(y) be IRd valued Borel functions defined respec-
tively on IRd × IRm and IRd with

a(y, x) = a1(y)x + a2(y, x)

where a1 and a2 are respectively matrix-valued and vector-valued. We make
the following assumptions on these coefficients; the derivatives are always
taken with respect to y and are indexed by multiindices k ∈ INd; the 0th
order derivative is by convention the function itself.

Assumption H(a, b). The coefficients a and b satisfy the following conditions.

1. The functions a1 and b are C∞
b , and a1a

?
1 is uniformly elliptic.

2. The function a2(y, x) is infinitely differentiable with respect to y, and
there exists some α > β ∨ 1 such that

|a(k)
2 (y, x)| ≤ Ck|x|α (10)

for any multiindex k ∈ INd and any |x| ≤ 1.

3. The function a satisfies
∣∣∣det(I + a′(y, x))

∣∣∣ ≥ c, |a(y, x)| ≤ C|x|, |a(k)(y, x)| ≤ Ck

for any y, any k ∈ INd\{0}, and µ-almost any x; moreover, the function
y 7→ y + a(y, x) is for µ-almost every x a diffeomorphism.

4. In the case β < 1, we suppose that b = 0.
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Then for any initial condition y0, the equation

Yt = y0 +
∫ t

0
b(Ys)ds +

∫ t

0
a(Ys−, dXs) (11)

with coefficients (a, b) has a unique solution; the stochastic integral is defined
as ∫ t

0
a(Ys−, dXs) = lim

∑

i

a(Yti , Xti+1
−Xti)

in probability as the step of the subdivision (ti) of [0, t] tends to 0, or equiv-
alently as the sum

∫ t

0
a(Ys−, dXs) =

∫ t

0
a1(Ys−)dXs +

∑

s≤t

a2(Ys−, ∆Xs)

of an Ito integral and of a sum which converges from (10) and (6) because
α > β. Notice that the equation (11) can be written as

dYt = dΞt(Yt−), Y0 = y0,

with

Ξt(y) = b(y)t +
∫ t

0
a(y, dXs).

With this notation we are in the framework of [6]; however, in contrast
with [6], we have not required the functions a(y, .) to be bounded in Lp(µ)
for p ≥ 2; they are only bounded when restricted to a bounded subset of
IRm; this difficulty can be passed over by noticing that there are only finitely
many big jumps on a finite time interval, so that one can study separately
the behaviour of the equation at big jumps and on intervals between these
big jumps (on which one can apply the results of [6]). One can deduce that
there exists a stochastic flow of diffeomorphisms φst such that Yt = φst(Ys);
in particular, the inversibility of the flow follows from the inversibility of
y 7→ y + a(y, x). In the case β < 1, the process Xt is a pure jump process, so
Yt has finite variation, and the condition b = 0 implies that Yt is also a pure
jump process.

Let us finish this section with a notation. If r > 0, we decompose the
process Xs into the sum of

X̃r
s =

∑

u≤s

∆Xu1{|∆Xu|>r}, Xr
s = Xs − X̃r

s . (12)
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Notice that Xr and X̃r are independent. We also introduce the process Y r

as the solution of

Y r
s = y0 +

∫ s

0
b(Y r

v )dv +
∫ s

0
a(Y r

v−, dXr
v ), (13)

and the pure jump process Ỹ r defined by

∆Ỹ r
s = a(Ỹ r

s−, ∆X̃r
s ), Ỹ r

0 = y0. (14)

Actually, we will consider a time interval [0, t], and use the decomposition
(12) on [0, t] for an r depending on t, generally r(t) = t1/β.

3 The density at the initial point

In this section, we prove that the density of Yt at the initial point y0 is of
order t−d/β as t → 0, and that it is also the order of the maximum of the
density.

Theorem 1 Assume H(X) and H(a, b). The Markov process Yt has for any
t > 0 a transition density

p(t, y0, y) = IP[Yt ∈ dy | Y0 = y0]
/

dy

which is infinitely differentiable with respect to y, and which satisfies the
following estimates as t → 0.

1. For t small and any k ∈ INd, if p(k) denotes the kth derivative with
respect to y (with p(0) = p), one has

sup
y0,y
|p(k)(t, y0, y)| ≤ Ckt

−(|k|+d)/β (15)

with the notation |k| = ∑
kj.

2. On the diagonal y = y0,

p(t, y0, y0) ³ t−d/β (16)

as t → 0 uniformly in y0.
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Before entering the proof, let us notice that with this result, one can
decide whether the potential density

Gλ(y0, y) =
∫ ∞

0
e−λtp(t, y0, y)dt (17)

is finite (for λ > 0). If d = 1 and β > 1, then Gλ is bounded, and otherwise
Gλ(y0, y0) = ∞. As a consequence, we have the following result.

Corollary 1 Assume H(X) and H(a, b).

1. If d ≥ 2 or β ≤ 1, then points are polar (with probability 1, the process
(Yt)t>0 never hits a fixed point y).

2. If d = 1 and β > 1, then points are regular for themselves (with prob-
ability 1, the process starting at y0 hits y0 at arbitrarily small positive
times). Moreover, if one considers a local time Lt at y0 and the subor-
dinator

τs = inf{t > 0; Lt > s}
(which may jump to infinity), then the Lévy measure µ of τs satisfies
the approximate scaling condition

µ{z; z > ρ} ³ ρ−β (18)

as ρ → 0 with index β = 1− 1/β (this is an estimation on the number
of small excursions).

Proof. One has

∫
p(s, y2, y1)p(t, y1, y0)dy1 = p(s + t, y2, y0) ≤ Cε

if s ≥ ε > 0, so

∫
Gλ(y1, y0)

(∫ ∞

ε
e−λsp(s, y2, y1)ds

)
dy1 < ∞

for any y0 and y2. By letting ε → 0, we deduce that for any y0, the set

P (y0) = {y1; Gλ(y1, y0) = ∞}
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has potential zero. On the other hand, it is classical and easily proved that
the map y1 7→ Gλ(y1, y0) is λ-excessive, so the set P (y0) is actually polar
(see [5, §XIV.85]). In particular, if d/β ≥ 1, one has Gλ(y0, y0) = ∞ from
(16), and {y0} is therefore polar. On the other hand, if d/β < 1 (so d =
1), then Gλ is uniformly bounded; let us explain briefly how it implies the
regularity of points. From (16), the function y1 7→ G1(y1, y0) is bounded and
uniformly excessive, so, as it is explained in Theorem 3.7 of [3], one deduces
the existence of a continuous additive functional Lt such that

G1(y1, y0) = IEy1

∫ ∞

0
e−sdLs (19)

(where the expectation is computed for the initial value Y0 = y1). This
functional can be defined by

Lt = lim
n

∫ t

0
fn(Ys)ds

where fn are approximations of the Dirac distribution at y0; in particular,
the process Lt increases only when Yt is at point y0, so Lt is a local time at
y0, and y0 is therefore regular for itself. Moreover, the functions Gλ when
λ > 0 are related with one another by the resolvent equation, and one can
deduce from (19) that

Gλ(y1, y0) = IEy1

∫ ∞

0
e−λsdLs

for any λ > 0. We deduce from this equation written for y1 = y0 that if g(λ)
is the Laplace exponent for the subordinator τs, then

Gλ(y0, y0) = IE
∫ ∞

0
exp(−λτs)ds =

∫ ∞

0
exp(−sg(λ))ds = 1/g(λ).

On the other hand, the estimate (16) implies that Gλ(y0, y0) ³ λ1/β−1 as
λ →∞, and therefore g(λ) ³ λ1−1/β. If µ is the Lévy measure of τs, we have

g(λ) =
∫

{z<∞}
(1− e−λz)µ(dz) + µ{z = ∞}.

The fact that this integral is of order λ1−1/β as λ → ∞ can be shown to be
equivalent to (18).

Remark. We have stated in Theorem 1 estimates for the density of Yt; how-
ever, by looking at [13] and at the proofs below, similar estimates can be
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proved for the density of ψ(Yt), where ψ is an affine function from IRd onto
some space of smaller dimension. In particular, one can prove as in Corol-
lary 1 that smooth submanifolds of IRd of dimension at most d− 2 are polar;
hypersurfaces H are polar if β ≤ 1, and if β > 1, any point of H is regular
for H.

The proof of Theorem 1 will rely on several lemmas; the idea is to check
that the variables (Yt − y0)/t

1/β have densities which are bounded as well
as their derivatives (to this end we will apply [13]); this will yield the first
part of the theorem (the upper bound (15)). Then we will check that these
variables are equivalent as t → 0 to some infinitely divisible variables; a lower
bound on the densities of these limit variables will give the lower bound in
(16).

The first step is to study the regularity of the law. First notice that the
Lévy process Xt is easily proved to have a smooth density; the Lévy-Khinchin
formula (1) and the approximate scaling condition (3) indeed imply

∣∣∣IE[eiw.Xt ]
∣∣∣ = exp−t

∫
(1− cos(w.x))µ(dx)

≤ exp−ct
∫

{|x|≤1/|w|}
(w.x)2µ(dx) ≤ exp−c′t|w|β.

The characteristic function is rapidly decreasing, so we deduce from the
Fourier inversion formula that Xt has a smooth density q(t, x) which sat-
isfies (15).

Let us now consider the process Yt; by taking our inspiration from Malli-
avin’s calculus, we have proved in [13] the existence of a smooth density for
systems of type (11). However, the assumptions were somewhat different;
the diffeomorphism assumption of H(a, b) was not required, but the func-
tions a(y, .) were assumed to have at most linear growth in Lp(µ) for p ≥ 2;
this condition is not supposed here (anyway, assuming it does not simplify
the following proof). Nevertheless, it is satisfied if the jumps are bounded
because in this case a(y, x) is dominated by |x| ∧ 1 which is in Lp(µ); in
particular, the solution Y r

s of (13) has a smooth density pr(s, y0, y) for any
s > 0. Moreover, by looking more precisely at the proofs of [13], one can
check the following result.

Lemma 1 Let X
r
be a family of Lévy processes indexed by some parameter r,

with jumps bounded by 1, with uniformly bounded drift parameter χr and with
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Lévy measures satisfying uniformly (2); let (ar, br) be a family of coefficients
satisfying uniformly the assumption H(a, b) (this means that the constant
numbers which are involved in this assumption do not depend on r); let Y

r

be the solution of the equation of type (11), with coefficients (ar, br) and
driven by X

r
. Then for any fixed t > 0, the variable Y

r
t has a C∞

b density
pr(t, y0, y), and

sup
r,y0,y

|p(k)
r (t, y0, y)| < ∞

for any k ∈ INd.

We are going to use this result in order to estimate the density pr(t, y0, y)
of Y r

t ; we first introduce the family X
r

to which we will apply this lemma.

Lemma 2 Define

χr = χ−
∫

{r<|x|≤1}
xµ(dx).

Then χr = O(r1−β) as r → 0. On the other hand, the family of Lévy processes
X

r
t = Xr

rβt/r indexed by the parameter 0 < r ≤ 1 satisfies the assumptions
of Lemma 1; moreover, if β < 1, the family X

r
satisfies uniformly (8).

Proof. In the case β > 1, we deduce from the scaling condition (5) that
∫

{r<|x|≤1}
xµ(dx) = O(r1−β),

so χr is also O(r1−β); this property is evident in the case β = 1 from (9), and
if β < 1,

χr =
∫

{|x|≤r}
xµ(dx) = O(r1−β)

by applying (7) and (5), so the first statement of the lemma is proved. For
the second statement, one checks that the drift parameter of X

r
is rβ−1χr,

so is bounded; its jumps are bounded by 1, and its Lévy measure is given by

µr(A) = rβµ(r A)

for A ⊂ {|x| ≤ 1}, so
∫

{|x|≤ρ}
xx?µr(dx) = rβ−2

∫

{|x|≤rρ}
xx?µ(dx)

for ρ ≤ 1, and the approximate scaling condition (2) holds uniformly for µr.
The proof of (8) in the case β < 1 is similar.
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Lemma 3 For any fixed h > 0 and k ∈ INd, the density pr of the process Y r

(defined by (13)) satisfies

|p(k)
r (rβh, y0, y)| ≤ Ckhr

−(|k|+d)

for 0 < r ≤ 1.

Proof. Consider the family of processes Y
r
h = Y r

rβh/r. Then Y
r
h is solution of

dY
r
h = br(Y

r
h)dh + ar(Y

r
h−, dX

r
h), Y

r
0 = y0/r

with the Lévy process X
r
h of Lemma 2, and the coefficients

br(y) = rβ−1b(ry), ar(y, x) = r−1a(ry, rx).

If β < 1, then br = 0, and otherwise, br is uniformly C∞
b . The function ar

admits the decomposition

ar(y, x) = a1(ry)x + r−1a2(ry, rx),

and it is easy to verify that the assumptionsH(a, b) are satisfied uniformly by
the family (ar, br) . Thus we deduce from Lemma 1 that for any fixed h > 0,
the variables (Y

r
h; r > 0) have uniformly C∞

b transition densities pr(h, y0, .).
In order to conclude, it is now sufficient to notice that

pr(r
βh, y0, y) = r−dpr(h, y0/r, y/r).

Lemma 4 Let φst be the stochastic flow of diffeomorphisms generated by the
equation (11). Then for any q ≥ 1 and any k ∈ INd \ {0},

sup
(t,y)∈[0,1]×IRd

IE sup
s≤t

∣∣∣(φ−1
st )(k)(y)

∣∣∣
q
< ∞. (20)

Proof. The reversed process Zs = Zs(t, y) = φ−1
(t−s)−,t(y) is the solution of the

equation

Zs = y −
∫ s

0
b(Zu)du +

∫ s

0
a0(Zu−, dVu)
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where Vs = Xt−X(t−s)−, and a0 is such that y 7→ y + a0(y, x) is for µ-almost
any x the inverse map of y 7→ y + a(y, x). This equation has the same type
than the forward one, and the Lévy process V has the same law than X. Our
assumptions H(a, b) imply estimates on a0 and its y-derivatives, so thanks
to [6], we deduce that the flow of this reversed equation has derivatives which
satisfy (20); actually, the function a0(z, .) is not bounded in Lp(µ), but one
can verify that only bounds on the derivatives of a0 are needed for (20).

Proof of the first part of Theorem 1. Let γ be a positive constant which will
be chosen later. Consider the sequence of intervals

In(t) = [tn, tn+1] = [t(1− 2−n+1), t(1− 2−n)], n ≥ 1,

and let N be the number of the first interval In on which X has no jump
greater than r = r(n, t) = γt1/β2−n/β, that is

N = min
{
n; sup{|∆Xu|; u ∈ In(t)} ≤ r(n, t)

}
.

Then

IP[N > n] =
n∏

k=1

IP
[
sup{|∆Xu|; u ∈ Ik(t)} > r(k, t)

]

=
n∏

k=1

(
1− exp

[
−|Ik|µ{|x| > r(k, t)}

])

≤
n∏

k=1

(
|Ik|µ{|x| > r(k, t)}

)
.

From (5), one has
µ{|x| > r(k, t)} ≤ Cγ−β2k/t,

and the length of Ik is t2−k, so

IP[N > n] ≤ Cnγ−nβ. (21)

In particular, N is almost surely finite if γ is chosen large enough. Denote
the random interval IN by [S ′, S] and let R = r(N, t). Let ψn : IRd → IRd be
the flow from time tn to time tn+1 for the equation driven by the truncated
process Xr(n,t), so that

IP[ψn(y1) ∈ dy] = pr(n,t)(|In|, y1, y)dy.
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Since X has no jump greater than R = r(N, t) on IN , one has YS = ψN(YS′);
for any n, ψn is independent from (N, Ytn), so

IP[YS ∈ dy | N = n, YS′ = y1] = IP[ψn(y1) ∈ dy | N = n, Ytn = y1]

= IP[ψn(y1) ∈ dy],

and therefore

IP[YS ∈ dy | N, YS′ ] / dy = pR(|IN |, YS′ , y).

The length of IN is (R/γ)β, so

IP[YS ∈ dy | N ] / dy = IE[pR((R/γ)β, YS′ , y) | N ].

This conditional density can be transported from time S to time t with the
diffeomorphism φSt generated by the equation; conditionally on N , φSt is
independent from YS and YS′ , so we can deduce the conditional density of Yt

given N , and by taking the expectation, we get

p(t, y0, y) = IE
[∣∣∣det(φ−1

St )′(y)
∣∣∣ pR((R/γ)β, YS′ , φ

−1
St (y))

]
. (22)

The determinant and pR can be estimated from Lemmas 4 and 3 (use h =
γ−β), so

p(t, y0, y) ≤ Cγ‖R−d‖2 = C ′
γt
−d/β‖2Nd/β‖2.

From (21), this L2 norm is bounded if γ is chosen large enough, so (15) is
proved for k = 0. The derivatives of p are dealt with by differentiating (22)
and using again Lemmas 4 and 3; the absolute value in (22) does not cause
any problem in the differentiation because the sign of the determinant does
not depend on y (since φ−1

St is a diffeomorphism). Thus

|p(k)(t, y0, y)| ≤ Ck,γt
−(d+|k|)/β‖2N(d+|k|)/β‖2.

By choosing γ larger and larger, we check (15) for any k.

Remark. Actually, with the above method, one can prove that the density
of Y r

t , for r > 0, satisfies

|p(k)
r (t, y0, y)| ≤ Ckt

−(d+|k|)/β (23)

uniformly for r ≥ t1/β. This will be used in next section.
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Any infinitely divisible variable X can be represented as the value at time
t = 1 of a Lévy process Xt; in particular, this variable can be characterized by
a drift parameter χ and a Lévy measure µ, and the characteristic function
of X is given by the Lévy-Khintchin formula (1) for t = 1. With these
definitions, we have the following result.

Lemma 5 Let X be an IRd-valued infinitely divisible variable, the Lévy mea-
sure µ of which satisfies (2), or (8) if β < 1; then its density is everywhere
positive.

The proof of this lemma is postponed until the appendix.

Lemma 6 Consider a family of IRd valued infinitely divisible variables Ξi
t

indexed by t > 0 and some parameter i ∈ I, and a family Υi
t of IRd valued

random variables. Assume the following conditions.

1. The variables Υi
t have densities which are C1

b uniformly in (t, i).

2. The variable Υi
t − Ξi

t converges in L1 to 0 as t → 0, uniformly in i.

3. The drift parameter of Ξi
t is uniformly bounded.

4. The Lévy measure µi
t of Ξi

t is supported by a bounded set, the measure
|x|2µi

t(dx) is uniformly bounded, and µi
t satisfies uniformly (2), or (8)

if β < 1.

Then the density of Υi
t is bounded below on any compact set as t → 0, uni-

formly in i.

Proof. The family of measures |x|2µi
t(dx) is relatively compact for the topol-

ogy of convergence on bounded continuous functions; since the family of drift
parameters is also relatively compact in IRd, the family of laws of the vari-
ables Ξi

t is tight (because weak convergence of the measure |x|2µi
t(dx) and

convergence of the drift parameter imply weak convergence of the infinitely
divisible variable from (1)). The limits of Ξi

t are infinitely divisible variables
which satisfy (2) or (8), so from Lemma 5, their densities are positive. On
the other hand, the variables Υi

t have the same weak limits as t → 0 and
i ∈ I; the densities of Υi

t are bounded in C1
b , so they are relatively compact

for the topology of uniform convergence on compact subsets, and we have
just proved that their limits are positive, so we can conclude.

16



Lemma 7 For r = r(t) = t1/β, the variable Y r
t (solution of (13)) satisfies

Y r
t = y0 + a1(y0)X

r
t + o(t1/β) = y0 + O(t1/β)

in L2 if β 6= 1, uniformly in y0, and

Y r
t = y0 + b(y0)t + a1(y0)X

r
t + o(t) = y0 + O(t)

if β = 1.

Proof. The Doob-Meyer decomposition of Y r is

Y r
s = y0 +Ms +

∫ s

0
b(Y r

u )du+
∫ s

0
a1(Y

r
u )du χr +

∫ s

0

∫

{|x|≤r(t)}
a2(Y

r
u , x)µ(dx)du

(24)
where χr = χr(t) was defined in Lemma 2, and where Ms is a martingale. Let
us estimate the three last terms of this sum for s ≤ t. The integral involving
b is uniformly of order t, and by assumption it is 0 in the case β < 1, so
it is always at most of order t1/β. Since χr is O(t1/β−1) from Lemma 2, the
term involving a1 is also O(t1/β). Finally, for the last integral, one applies
the assumption (10) on a2 and

∫

{|x|≤r}
|x|αµ(dx) = O(rα−β),

so ∣∣∣
∫ s

0

∫

{|x|≤r(t)}
a2(Y

r
u , x)µ(dx)du

∣∣∣ ≤ C tα/β = o(t1/β). (25)

Thus the predictable finite variation part of Y r is at most of order t1/β. For
the martingale part, we denote by [M, M ]t the quadratic variation of Mt and
obtain

IE|Ms|2 ≤ IE[M, M ]t = IE
∫ t

0

∫

{|x|≤r(t)}
|a(Y r

u , x)|2µ(dx)du = O(t2/β)

from (4) since |a(y, x)| ≤ C|x|. Thus

Y r
s = y0 + O(t1/β) (26)

in L2, uniformly for s ≤ t. If now we want to find a more precise estimate,
we write the decomposition

Xr
s = sχr + MX

s

17



where MX
s is a martingale, and deduce from (24) that

Y r
s = y0 + b(y0)s + a1(y0)X

r
s + M ′

s +
∫ s

0
(b(Y r

u )− b(y0))du

+
∫ s

0
(a1(Y

r
u )− a1(y0))du χr +

∫ s

0

∫

{|x|≤r(t)}
a2(Y

r
u , x)µ(dx)du

for the martingale M ′
s = Ms− a1(y0)M

X
s . From (25) and (26), the three last

terms are negligible with respect to t1/β in L2; since

∆M ′
s = ∆Y r

s − a1(y0)∆Xr
s = a2(Y

r
s−, ∆Xr

s ) + (a1(Y
r
s−)− a1(y0))∆Xr

s ,

we have

IE|M ′
t|2 = IE[M ′,M ′]t

= IE
∫ t

0

∫

{|x|≤r(t)}

∣∣∣a2(Y
r
s , x) + (a1(Y

r
s )− a1(y0))x

∣∣∣
2
µ(dx)ds

≤ C
∫ t

0

∫

{|x|≤r(t)}

(
|x|2α + t2/β|x|2

)
µ(dx)

= O(t2α/β + t4/β).

Thus M ′
t is also o(t1/β), and we deduce that

Y r
t = y0 + b(y0)t + a1(y0)X

r
t + o(t1/β).

If β < 1, one has b = 0, and if β > 1, t is o(t1/β), so the estimate of the
lemma follows.

Proof of the second part of Theorem 1. The upper bound was already proved.
For t > 0 fixed, we are going to consider the truncated process Xr of (12)
with r = r(t) = t1/β, and the corresponding solution Y r of (13). Since

t µ{|x| > r(t)} ≤ C,

the probability of the event

At =
{
sup
s≤t

|∆Xs| ≤ r(t)
}

is bounded below by a positive constant, and on this event, one has X = Xr

and Y = Y r on the time interval [0, t]. Since Y r and At are independent, one
has

p(t, y0, y) ≥ IP[At] IP[Y r
t ∈ dy]

/
dy ≥ c IP[Y r

t ∈ dy]
/

dy.
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Thus we only have to find a lower bound for the density of Y r
t at y0; more

precisely, we have to prove that the density of Υt = (Y r
t − y0)/t

1/β is asymp-
totically bounded below at 0. Recall that the infinitely divisible variable
X

r
1 = Xr

t /t
1/β was proved in Lemma 2 to have bounded drift coefficient and

to satisfy uniformly the approximate scaling condition (2) or (8); since a1 is
bounded and a1a

?
1 is uniformly elliptic, one can check that a1(y0)X

r
1 also sat-

isfies these conditions. Moreover, from Lemma 7, the variable Υt− a1(y0)X
r
1

converges to 0 as t → 0 (to b(y0) in the case β = 1), and the density of Υt

has already been proved to be uniformly C1
b in (15); thus we can conclude

from Lemma 6 (the index i of this lemma is not used here).

4 The density at accessible points

In this section, we obtain successively in Theorems 2 and 3 a lower and an
upper bound for the density at points y which are accessible with a finite
number of jumps from y0. Then we emphasize in Corollary 2 the case where
these two bounds are similar. When the points are regular for themselves
(d = 1 and β > 1), we deduce in Corollary 3 an estimate on the hitting times
of points. Finally, we give examples where one can apply our results.

Let ν be a probability measure on IRm such that ν and µ are mutually
absolutely continuous; we suppose that dν / dµ is globally bounded above,
and is locally bounded below on IRm \ {0}; for instance, one can choose

ν(dx) = (|x|2 ∧ 1)µ(dx)
/ ∫

(|z|2 ∧ 1)µ(dz).

We let Un be the Markov chain given by

Un+1 = a(Un, ξn+1), U0 = y0 (27)

where (ξn) are independent variables with distribution law ν, which are cho-
sen independent of the process X. The support of Un consists of the points
which are accessible with n jumps.

Theorem 2 Assume H(X) and H(a, b), consider the Markov chain Un, and
let y 6= y0 be a fixed point such that

IP[|Un − y| ≤ ε] ≥ c εγ (28)
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for any ε ≤ 1 and some γ ≥ 0, n ≥ 1. Then, for t small,

p(t, y0, y) ≥ c tn+(γ−d)/β.

For the proof of this theorem, if 1/c0 is an upper bound for dν/dµ, we
use the decomposition of Xs as the sum X̃s + Zs of two independent Lévy
processes with respective Lévy measures c0ν and µ− c0ν, and such that X̃s

is a pure jump process. Let Ỹs be the pure jump process satisfying

∆Ỹs = a(Ỹs−, ∆X̃s), Ỹ0 = y0,

and let N = N(t) be the number of jumps of X̃ before time t. For t fixed,
the process Zs can also be decomposed as Zr

s + Z̃r
s , where Z̃r

s consists of the
jumps greater than r = r(t) = t1/β. Let Y (r)

s be the solution of the equation
(11) driven by X̃ + Zr. One proceeds as in the second part of Theorem 1;
the processes X̃, Zr and Z̃r are independent, the probability that Z̃r ≡ 0
on [0, t] is bounded below by a positive constant, and on this event, one has

Yt = Y
(r)
t ; thus it is sufficient to estimate the density of Y

(r)
t at y. We are

going to work conditionally on X̃.

Lemma 8 Use in this lemma the notation Ht = o(t1/β) in order to say

IE
[
|Ht|2 | X̃

]1/2 ≤ εn(t)t1/β

on the event {N = n}, where the function εn(t) converges to 0 as t → 0 for
any n. Then there exists a matrix-valued function A such that

Y
(r)
t = Ỹt +

∫ t

0
A(s, X̃)a1(Ỹs)dZ

r
s + o(t1/β) (29)

in the case β 6= 1, and

Y
(r)
t = Ỹt +

∫ t

0
A(s, X̃)(a1(Ỹs)dZ

r
s + b(Ỹs)ds) + o(t)

in the case β = 1; moreover A(s, X̃) and its inverse are bounded by some
C(n) on {N = n}.
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Proof. We only consider the case β 6= 1 (the generalization is easy). In order

to understand the behaviour of Y
(r)
t − Ỹt on {N = n}, let us consider the

small values of n. For n = 0, one has X̃s = 0, Ỹs = y0 and Y (r)
s , s ≤ t,

reduces to the solution of the equation driven by Zr; we can get estimates
similar to those of Lemma 7, and get

Y
(r)
t = y0 + a1(y0)Z

r
t + o(t1/β), (30)

so the result (29) holds with A = I. Let us now consider the case n = 1;
denote by T the time of the jump of X̃ in [0, t]; on the intervals where X̃
does not jump, we can apply (30) to the semigroup of Y (r) conditioned on X̃
which coincides with the semigroup of the Zr driven process; in particular,
on the interval [0, T [, we obtain

Y
(r)
T− = y0 + a1(y0)Z

r
T + o(t1/β) = y0 + O(t1/β).

At time T , we have
ỸT = y0 + a(y0, ∆X̃T )

and

Y
(r)
T = Y

(r)
T−+a(Y

(r)
T− , ∆X̃T ) = y0+a1(y0)Z

r
T +a(y0+a1(y0)Z

r
T , ∆X̃T )+o(t1/β),

so
Y

(r)
T = ỸT + (I + a′(y0, ∆X̃T ))a1(y0)Z

r
T + o(t1/β).

In particular, Y
(r)
T − ỸT is of order t1/β. Moreover, on the interval [T, t], one

has, as on [0, T [,

Y
(r)
t = Y

(r)
T + a1(Y

(r)
T )(Zr

t −Zr
T ) + o(t1/β) = Y

(r)
T + a1(ỸT )(Zr

t −Zr
T ) + o(t1/β)

and Ỹt = ỸT , so that

Y
(r)
t = Ỹt + (I + a′(y0, ∆X̃T ))a1(y0)Z

r
T + a1(ỸT )(Zr

t − Zr
T ) + o(t1/β).

Therefore, the result (29) holds with

A(s, X̃) = (I + a′(y0, ∆X̃T ))1{s≤T} + I 1{T<s}.

More generally, if Ti, 1 ≤ i ≤ N are the times of the jumps of X̃ on [0, t]
with the convention T0 = 0 and TN+1 = t, one can prove (29) with

A(s, X̃) = (I + a′(ỸTN−1
, ∆X̃TN

)) . . . (I + a′(ỸTi
, ∆X̃Ti+1

))
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on {Ti < s < Ti+1}, 0 ≤ i < N , and A(s, X̃) = I if i = N .

Proof of Theorem 2. Consider the event

An = {N = n} ∩ {Tn ≤ t/2}

on which X̃ has n jumps on the time interval [0, t/2], and no jump on [t/2, t].
The probability of An is bounded below by some c tn. On the other hand, on
An, the conditional law of Y

(r)
t given X̃ and Y

(r)
t/2 coincides with the transition

kernel from time t/2 to time t for the equation driven by Zr; in particular we
can apply Lemma 3 to this transition kernel, and after taking the mean with
respect to the law of Y

(r)
t/2 , we deduce that the conditional density of Y

(r)
t /t1/β

given X̃ is uniformly C1
b on An. The variable (Y

(r)
t − Ỹt)/t

1/β satisfies the
same property, and from Lemma 8, it is equivalent (conditionally on X̃) to
some infinitely divisible variable satisfying the assumptions of bounded drift
and approximate scaling; we deduce from Lemma 6 (the index i of this lemma
is here the path of X̃) that

IP[(Y
(r)
t − Ỹt)/t

1/β ∈ dz | X̃] ≥ c dz

on An and for z in a bounded set. Thus

IP[Y
(r)
t ∈ dy | X̃] ≥ ct−d/βdy

on {|y − Ỹt| ≤ t1/β} ∩ An, and therefore

IP[Y
(r)
t ∈ dy] ≥ ct−d/βIP[|Ỹt − y| ≤ t1/β; An]dy. (31)

On the other hand, the jumps ∆X̃Ti
of X̃ are independent with common

law ν, and are independent from the sequence of their times (Ti); since the
sequence (ξn) involved in the definition of Un is also chosen independent of
(Ti), we deduce that conditionally on An, the variables Ỹt and Un have the
same law. Thus

IP[|Ỹt − y| ≤ t1/β; An] = IP[|Un − y| ≤ t1/β; An]

= IP[|Un − y| ≤ t1/β]IP[An]

≥ c tn+γ/β, (32)

and we can conclude from (31) and (32).
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We have proved in Theorem 2 that a lower bound on the density of Yt at
y can be related to a lower bound on the distribution of the Markov chain
Un of (27) near y. For the upper bound, an estimate on the distribution of
Un is not sufficient, but more generally, we need an upper bound on a family
of Markov chains Vn which are perturbations of Un.

Theorem 3 Assume H(X) and H(a, b); let (ξn) be a sequence of indepen-
dent variables with law ν, as described in the beginning of this section; con-
sider the Markov chain

Vn+1 = (fn+1 ◦ a)(Vn, ξn+1), V0 = f0(y0) (33)

for some smooth functions fn such that

Φn = sup
k≤n,y

(
|fk(y)− y|+ |f ′k(y)− I|

)
< ∞.

Fix some point y 6= y0. Suppose that there exists a non decreasing sequence
Kn and a sequence γn ∈ [0, +∞] such that for any n, for any sequence
(fk)0≤k≤n satisfying Φn ≤ Kn, one has

IP[|Vn − y| ≤ ε] ≤ Cnεγn (34)

for ε > 0 if γn < ∞, and the probability is 0 for ε small enough if γn = ∞.
Let

Γ = min
n

(n + (γn − d)/β). (35)

If Γ < ∞, then p(t, y0, y) = O(tΓ) as t → 0, and if Γ = ∞, then p(t, y0, y) =
o(tn) for any n.

Notice that if y is not ∆-accessible, then y is not in the support of Un,
and by choosing the size of perturbations Kn small enough, it is not in the
support of Vn; thus one can take γn = ∞ for any n, and therefore Γ = ∞.

We decompose the proof of this theorem into some lemmas; it is sufficient
to prove it when γn is finite (by letting γn → ∞ when it is infinite), so we
make this assumption in the proof.

Lemma 9 Consider a family of d-dimensional variables H admitting uni-
formly C1

b densities p. Then for any q ≥ 1,

p(y) ≤ Cq

(IE[|H|q] + 1

(1 + |y|)q

)1/(d+1)
. (36)
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Proof. Let p′0 be an upper bound for the derivative of p. Then

p(z) ≥ p(y)− p′0|z − y| ≥ p(y)/2

for |z − y| ≤ p(y)/(2p′0), so

IE[|H|q] ≥ p(y)

2

∫

{|z−y|≤p(y)/(2p′0)}
|z|qdz

= c p(y)d+1
∫

{|z−y|≤p(y)/(2p′0)}
|z|qdz

/ ∫

{|z−y|≤p(y)/(2p′0)}
dz

≥ c p(y)d+1|y|q.

We deduce
p(y) ≤ C(IE[|H|q] / |y|q)1/(d+1) (37)

so the estimation (36) is proved for |y| ≥ 1/2. For |y| < 1/2, we can choose
a unit vector e, and since p(y) is the density of H + e at y + e, we obtain
(37) with (H, y) replaced by (H + e, y + e) in the right-hand side; we again
deduce (36).

Lemma 10 Consider the pure jump processes X̃r
s and Ỹ r

s of (12) and (14)
for r = r(t) = t1/β, and let N = N(t) be the number of jumps of X̃r before
time t. Then, for any λ > 0, one has

IP[|Ỹ r
t − y| ≤ λt1/β | N ] ≤ C(1 + λL + NL)tΓ+d/β

for some L > 0.

Proof. For L ≥ 4(Γ + d/β), the statement of the lemma holds on the event
{N > t−1/4}, so it is sufficient to prove it on {N ≤ t−1/4}. Conditionally on
N , on {N > 0}, the number of jumps of size greater than t1/(2β) is a binomial
variable with parameters N and

κ(t) =
µ{x; |x| > t1/(2β)}
µ{x; |x| > t1/β} = O(

√
t).

For an integer ` fixed, consider the event

A =
{∑

s≤t

1{|∆Xs|>t1/(2β)} < `
}
.
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Then, on the event {` ≤ N ≤ t−1/4}, one has

IP[Ac | N ] =
N∑

j=`

(
N

j

)
κ(t)j(1− κ(t))N−j ≤

N∑

j=`

N jκ(t)j = O(t`/4) = O(tΓ+d/β)

(38)
if we choose ` ≥ 4(Γ + d/β), so it is sufficient to work on the event A. Now,
in (12), consider both processes X̃r for r = r(t), and X̃ρ for some ρ > 0
fixed. Let J = J(t) be the number of jumps of X̃ρ before time t, and let
(Sj)1≤j≤J the times of these jumps; put S0 = 0 and SJ+1 = t. For each j and
y1, consider the pure jump process

∆Zj,y1
s = a(Zj,y1

s− , ∆X̃r
s −∆X̃ρ

s ), Zj,y1

Sj
= y1 (39)

for s ≥ Sj, and let fj(y1) be the value of this process at time Sj+1, so that

Ỹ r
Sj+1− = fj(Ỹ

r
Sj

).

One can construct from (33) a chain Vj with these perturbations fj, and
a chain V j with these functions fj but with variables (ξn) with law µ(dx)

conditioned on {|x| > ρ}; conditionally on (X̃r − X̃ρ, (Sj)), the variables Ỹ r
t

and V J have the same law, and the law of V j is dominated by the law of Vj,
so

IP[|Ỹ r
t − y| ≤ λt1/β | X̃r − X̃ρ; (Si)] ≤ CjIP[|Vj − y| ≤ λt1/β | X̃r − X̃ρ] (40)

on {J = j}; since J < ` on A, the dependence of the constant Cj on j
is not important. We now verify that if ρ is chosen small enough, then
the perturbations fj satisfy the assumptions of Theorem 3. Notice that on
A ∩ {N ≤ t−1/4}, one has

∑

s≤t

∣∣∣∆X̃r
s −∆X̃ρ

s

∣∣∣

=
∑

s≤t

|∆Xs|1{t1/β<|∆Xs|≤t1/(2β)} +
∑

s≤t

|∆Xs|1{t1/(2β)<|∆Xs|≤ρ}

≤ Nt1/(2β) + `ρ ≤ 2`ρ

for t small enough; since a(y, x) and a′(y, x) are of order |x| as x → 0, one
deduces from the study of (39) that

|fj(y)− y| ≤ C
∑

Sj<s≤Sj+1

∣∣∣∆X̃r
s −∆X̃ρ

s

∣∣∣ ≤ 2C`ρ
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and

|f ′j(y)− I| ≤ C
∑

Sj<s≤Sj+1

∣∣∣∆X̃r
s −∆X̃ρ

s

∣∣∣
∏

Sj<s≤Sj+1

(
1 + C

∣∣∣∆X̃r
s −∆X̃ρ

s

∣∣∣
)

≤ 2C`ρ exp(2C`ρ).

These expressions are less than K` if ρ is chosen small enough, so we can
apply (34) on the event A ∩ {N ≤ t−1/4} to the conditional law of Vj for
j ≤ `. Thus

IP
[
|Ỹ r

t − y| ≤ λt1/β
∣∣∣ N

]

≤ IP[Ac | N ] +
`−1∑

j=0

IE
[
1A1{J=j}IP

[
|Ỹ r

t − y| ≤ λt1/β
∣∣∣ X̃r − X̃ρ; (Si)

] ∣∣∣∣ N
]

≤ IP[Ac | N ] + C
`−1∑

j=0

IE
[
1{J=j}IP

[
|Vj − y| ≤ λt1/β

∣∣∣ X̃r − X̃ρ
] ∣∣∣∣ N

]

≤ C ′tΓ+d/β + C ′
`−1∑

j=0

IP[J = j | N ]λγj tγj/β

where we have used (40) in the second inequality, (34) and (38) in the third
one. Conditionally on N , the variable J has a binomial law with parameters
N and µ{|x| > ρ} / µ{|x| > r} = O(t), so the conditional probability of
{J = j} is dominated by N jtj; thus

IP
[
|Ỹ r

t − y| ≤ λt1/β
∣∣∣ N

]
≤ CtΓ+d/β + C

`−1∑

j=0

λγjN jtj+γj/β

≤ CtΓ+d/β
(
1 +

`−1∑

j=0

λγjN j
)

from the definition (35) of Γ. The lemma follows from this estimation.

Lemma 11 With the notation of Lemma 10, for any k ∈ INd, the conditional
density p̃ of Yt given X̃r satisfies

|p̃(k)(y)| ≤ Ckt
−(d+|k|)/β exp(CkN).

Proof. Let T1, . . . , TN be the times of jumps of X̃r, let T0 = 0, TN+1 = t; there
is at least one time interval [Ti, Ti+1] of length at least t/(N+1), say [TI , TI+1];
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the conditional transition density from time TI to time S = TI + t/(N + 1)
of Y coincides, on {N = n}, with the transition density of Y r from time 0 to
t/(n + 1). In particular, one deduces from (23) that this transition density
and more generally its kth derivatives are dominated by (t/(n+1))−(d+|k|)/β.
By integrating with respect to the conditional law of YTI

, we deduce that the

conditional density p̃S of YS given X̃r satisfies

|p̃(k)
S (y)| ≤ Ck(t/(N + 1))−(d+|k|)/β. (41)

On the other hand, this density p̃S can be propagated until time t in order
to get the conditional density of Yt = φSt(YS) given X̃r and the increments
of X between S and t; we deduce

p̃(y) = IE
[
|det(φ−1

St )′(y)|p̃S(φ−1
St (y))

∣∣∣ X̃r
]
. (42)

In order to estimate this conditional expectation and its derivatives with
respect to y, we decompose the diffeomorphism φ−1

St by

φ−1
St = φ−1

S,TI+1− ◦ φ−1
TI+1−,TI+1

◦ . . . ◦ φ−1
TN−1,TN− ◦ φ−1

TN−,TN
◦ φ−1

TN ,t. (43)

The maps φ−1
Tj−,Tj

are X̃r-measurable and have bounded derivatives, and con-

ditionally on X̃r, the maps φ−1
Tj ,Tj+1− are independent and, as in Lemma 4,

they satisfy
IE

[
|(φ−1

Tj ,Tj+1−)(l)(y)|q
∣∣∣ X̃r

]
≤ Cl,q

for l ∈ INd \ {0}. Thus, by differentiating (43), we deduce that

IE
[
|(φ−1

St )(l)(y)|
∣∣∣ X̃

]
≤ exp(ClN),

so, from (42) and (41),

|p̃(k)(y)| ≤ Ck(t/(N + 1))−(d+|k|)/β exp(CkN).

Lemma 12 With the notation of Lemma 10, for q ≥ 1, one has

IE
[
|Yt − Ỹ r

t |q
∣∣∣ X̃r

]1/q ≤ Cqt
1/β exp(CqN).
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Proof. This is done like Lemma 8; the difference is that we need all the
moments and not only the second one. On {N = 0}, we have Yt = Y r

t and
Ỹ r

t = y0, so we have to check that Y r
t − y0 = O(t1/β) in Lq; from the Doob-

Meyer decomposition (24), the only term which must be studied is Mt; since

Mt is dominated by [M, M ]
1/2
t from the Burkholder-Davis-Gundy inequalities

(see for instance [4]), it is sufficient to prove that [M,M ]t is of order t2/β.
One can write the Doob-Meyer decomposition

[M, M ]t =
∫ t

0

∫

{|x|≤r}
|a(Y r

u , x)|2µ(dx)du + M t ≤ Ct2/β + M t (44)

for a martingale M t. Since the jumps of M are bounded by some Ct1/β, one
has

[M, M ]t =
∑

s≤t

|∆Ms|4 ≤ Ct2/β[M,M ]t,

so, for q ≥ 2, by applying again the Burkholder-Davis-Gundy inequalities,
we obtain from (44) that

∥∥∥[M, M ]t
∥∥∥

q
≤ Ct2/β +

∥∥∥[M, M ]1/2
t

∥∥∥
q

≤ Ct2/β + Ct1/β
∥∥∥[M, M ]t

∥∥∥
1/2

q/2
. (45)

We know from (44) that [M, M ]t is O(t2/β) in L1, so (45) shows that it is
also O(t2/β) in L2, and more generally, that is O(t2/β) in Lq for any q ≥ 1;
thus our result is proved on {N = 0}. More generally, for higher values of
N , if Ti are the times of jumps of X̃r with T0 = 0 and TN+1 = t, one checks
similarly that

IE
[
|YTi+1− − YTi

|q
∣∣∣ X̃r

]1/q ≤ Cqt
1/β.

One has Ỹ r
Ti+1− = Ỹ r

Ti
, so

IE
[
|YTi+1− − Ỹ r

Ti+1−|q
∣∣∣ X̃r

]1/q ≤ IE
[
|YTi

− Ỹ r
Ti
|q

∣∣∣ X̃r
]1/q

+ Cqt
1/β.

From the Lipschitz continuity of y 7→ y + a(y, x), we have

|YTi+1
− Ỹ r

Ti+1
| ≤ C|YTi+1− − Ỹ r

Ti+1−|.
We deduce from the two above formulas an induction relation on the condi-
tional moments of YTi

− Ỹ r
Ti

from which we get

IE
[
|YTn − Ỹ r

Tn
|q

∣∣∣ X̃r
]1/q ≤ Cqt

1/β
n−1∑

i=1

Ci.
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We conclude by taking n = N + 1.

Proof of Theorem 3. Consider the variable

H = exp(CN)(Yt − Ỹ r
t )/t1/β

where the constant C is chosen large enough, so that the conditional density
of H given X̃r is uniformly C1

b (this is possible from Lemma 11). The condi-
tional moments of H have from Lemma 12 at most exponential growth with
respect to N , so by applying Lemma 9, we obtain that for any q,

IP[H ∈ dh | X̃r]
/

dh ≤ Cq(1 + |h|)−q exp(CqN).

Thus the conditional density p̃ of Yt satisfies (with a modification of Cq)

p̃(y) ≤ Cqt
−d/β

(
exp(CqN)

(
1 + t−1/β|y − Ỹ r

t | exp(CN)
)−1

)q

≤ Cqt
−d/β

(
exp(CqN)

(
1 + t−1/β|y − Ỹ r

t |
)−1

)q

.

The density p(t, y0, y) is the expectation of p̃(y); we apply the relation

IE[Zq] = q
∫ ∞

0
uq−1IP[Z ≥ u]du

valid for positive variables Z and get

p(t, y0, y) ≤ qCqt
−d/β

∫ ∞

0
uq−1IP

[
1 + t−1/β|y − Ỹ r

t | ≤ exp(CqN)/u
]
du

≤ C ′
qt

Γ
∫ ∞

0
uq−1IE

[(
1 + NL + u−L exp(LCqN)

)
1{N≥log u/Cq}

]
du

from Lemma 10. The variable N = N(t) is a Poisson variable with bounded
mean, so it is not difficult to verify that the expectation is uniformly o(u−k)
for any k as u →∞, and is uniformly O(u−L) as u → 0; thus the integral is
bounded if we choose q > L.

Here is an immediate consequence of Theorems 2 and 3.

Corollary 2 Assume the conditions of Theorem 3 with Γ < ∞, and suppose
that the lower bound (28) on the distribution of Un holds for n and γ = γn

such that Γ = n + (γn − d)/β. Then p(t, y0, y) ³ tΓ as t → 0.
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When the point y is regular for itself (see Corollary 1), we can also deduce
an estimate on the hitting time of y.

Corollary 3 Assume the conditions of Corollary 2, and suppose moreover
d = 1 and β > 1. Define

Ty = inf{t > 0; Yt = y}.
Then, as t → 0,

IP[Ty ≤ t] ³ tΓ+1/β.

Proof. We deduce from Corollary 2 that the potential density Gλ(y0, y)
defined in (17) is of order λ−Γ−1 as λ → ∞; from Theorem 1, Gλ(y, y) is
of order λ1/β−1. Moreover, since y0 7→ Gλ(y0, y) is λ-excessive, the process
e−λtGλ(Yt, y) is a supermartingale, and it is actually a martingale up to Ty,
so

IE
[
e−λTy

]
=

Gλ(y0, y)

Gλ(y, y)
³ λ−Γ−1/β.

This estimate can be shown to be equivalent to the statement of the corollary.

Now let us explain how one can apply the above results. When one is
given a point y, the first thing to do is to look at the minimal number of
jumps n0 with which y is accessible; then for k < n0, the point y is at a
positive distance of the support of Uk, and if the perturbations are small
enough, it is also at a positive distance of the support of Vk, so we can take
γk = ∞. Then one has to look for the values of γk, k ≥ n0, satisfying the
assumptions of the theorems (more precisely the upper bound (34) for any k,
and the lower bound (28) for a k for which the expression in the definition of
Γ is minimal). However, since we are only interested in Γ, and since we know
that the upper bound is always satisfied with γk = 0, it is not necessary to
compute all the values of γk; we can stop at the first value n such that

n− d/β ≥ min
k<n

(k + (γk − d)/β).

Moreover, one may sometimes know a better lower bound γ > 0 on the values
of γk, and in this case, this stopping criterion can be improved.

Example 1. Suppose that the support of µ is a countable set S such that
S ∩ {|x| > ρ} is finite for any ρ > 0. Fix y0 and y and let n be the minimal
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number of jumps which drive the process from y0 to y; we suppose that n is
finite (the point y is ∆-accessible). As it has been explained, one can take
γk = ∞ for k < n. On the other hand we can take γk = 0 for k ≥ n in
(34), and we obtain Γ = n − d/β. The point y is isolated in the support of
Un, so the lower bound (28) holds for n and γ = 0. Thus Corollary 2 can be
applied. In this case, one can say that the process follows the path from y0

to y which has the minimal number of jumps.

Example 2. Consider the example

µ(dx) = g(x)|x|−d−βdx

where g is bounded below and above by positive constant numbers. Suppose
also that, if y is in some neighbourhood of y0, the map x 7→ a(y, x) is a C1

diffeomorphism and that its Jacobian and its inverse are bounded. We can
choose ν so that it has a bounded density; from our assumption on a(y0, .),
the variable U1 has a bounded density, and by composing with the transition
kernel, we deduce that the variables Un have bounded densities; moreover,
the perturbations y 7→ fn(y) of Theorem 3 are also diffeomorphisms (if Kn

is small enough), so the variables Vn also have bounded densities. Thus we
can take γn = d for any n ≥ 1, so that Γ = 1. It is also clear that the lower
bound (28) on the distribution of U1 holds for n = 1, γ = d, so p(t, y0, y) ³ t
for any y; the process goes from y0 to y with only one big jump. This is a
particular case of the framework of [9]. If g has compact support, we can
consider points y that the process can reach with n jumps and obtain as in [7]
that the density is of order tn.

Example 3. Suppose µ = µ1 + µ2 where µ1 and µ2 satisfy respectively the
assumptions of examples 1 and 2; suppose that the diffeomorphism assump-
tion on x 7→ a(y, x) of previous example is satisfied for any y. Let y be a
point that the chain Un can reach with jumps in the support of µ1, and let
n be the minimal number of these jumps; we suppose n ≥ 2. Then γk = d
for 1 ≤ k < n, and γn = 0, so Γ = min(1, n − d/β). Thus the process
goes directly from y0 to y if n > 1 + d/β, but it prefers to make n jumps if
n < 1 + d/β. This means that the process does not always minimizes the
number of jumps; it prefers singular jumps (coming from the singular part
µ1 of µ) to regular jumps (coming from µ2).

Example 4. There may be some points where there is a gap between the
lower and upper estimates of Theorems 2 and 3, so that one cannot conclude.
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Suppose that y0 = 0, a(y, x) = x (so that Yt = Xt) and that µ has a smooth
density which is positive except at some point y1. Then for y 6= y1, one has
p(t, 0, y) ³ t as in example 2. On the other hand, let us consider y = y1;
the upper estimate (34) is satisfied with γ1 = d and it cannot be improved;
however, the lower bound (28) does not hold for this value of γ because the
density of U1 is 0 at y. The problem appears because we have introduced
a perturbed Markov chain Vn in the study, and here, the variable V1 may
have more mass near y than U1. Thus we cannot conclude about the precise
behaviour of the density at this point.

5 Appendix: Proof of Lemma 5

One can write X = X1 as the value at time 1 of a Lévy process Xt with
density q(t, x). By writing the law of X1 as the convolution of the law of
X1/2 with itself, one obtains

q(1, x) = IEq(1/2, x−X1/2).

Since q(1/2, z) is positive in the neighbourhood of a point z0, it is sufficient to
prove that x− z0 is in the support of X1/2. Thus the lemma will be proved if
we check that the support of Xt is IRd for any t > 0. We need some notation.
For 0 < ρ < 1, let Sρ

µ be the set of unit vectors z such that
∫

{|x|≤1}
1{x.z≥(1−ρ)|x|}|x|βµ(dx) = ∞

and let Sµ be the intersection of these sets as ρ → 0; in other words, if

ν(A) =
∫

{|x|≤1}
1A(x/|x|)|x|βµ(dx), (46)

then Sµ is the set of unit vectors z such that the ν-measure of any neigh-
bourhood of z in the unit sphere is infinite. Let Σµ be the closed additive
semigroup generated by the support of µ, let Σ′

µ be the convex cone with ver-
tex 0 generated by the directions z ∈ Sµ, and let Σ′′

µ be the linear subspace
generated by the vectors of Sµ.

Lemma 13 The closed support of Xt satisfies

supp Xt + Σ′
µ ⊂ supp Xt.
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Proof. If one adds to Xt an independent variable with law

1{|x|≥ρ}µ(dx) / µ({|x| ≥ ρ}),

one obtains a law which is absolutely continuous with respect to the law of
Xt, so by letting ρ → 0, one deduces that

supp Xt + supp µ ⊂ supp Xt,

so
supp Xt + Σµ ⊂ supp Xt. (47)

On the other hand, let z be a point of Sρ
µ; then there exists a point x in the

support of µ satisfying

x.z ≥ (1− ρ)|x|, |x| ≤ ρ.

In particular, the first inequality implies

|z − x/|x|| ≤
√

2ρ.

For any λ > 0, if [.] denotes the integer value, we have

∣∣∣∣
[ λ

|x|
]
x− λz

∣∣∣∣ ≤ ρ + λ
√

2ρ.

Thus the distance between λz and Σµ is dominated by ρ + λ
√

2ρ for any λ,
ρ and any z ∈ Sρ

µ. If now z is in Sµ, by letting ρ → 0, we deduce that Σµ

contains λz for any λ > 0; since Σµ is a semigroup, it contains Σ′
µ. Thus the

lemma is proved from (47).

Lemma 14 If β ≥ 1, then

supp Xt + Σ′′
µ ⊂ supp Xt.

Proof. If {T1, . . . , TK} is a finite random subset of [0, t], then the law of
Xt −∑K

j=1 ∆XTj
is absolutely continuous with respect to the law of Xt, so

(
Xt −

K∑

j=1

∆XTj

)
∈ supp Xt a.s. (48)
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Fix z in Sρ
µ and consider the jumps ∆XTj

of X in the set {x.z ≥ (1−ρ)|x|}∩
{|x| ≤ ρ}, and ordered in decreasing magnitude, so that ∆XTj

→ 0. From
the definition of Sρ

µ, one has

∑

j

|∆XTj
|β = ∞.

Since β ≥ 1, one has
∑ |∆XTj

| = ∞, and since the jumps are in the cone
{x.z ≥ (1− ρ)|x|}, we deduce

lim
k

∣∣∣
k∑

j=1

∆XTj

∣∣∣ = ∞.

For λ > 0, define
K = inf

{
k;

∣∣∣
∑

j≤k

∆XTj

∣∣∣ ≥ λ
}
.

Since the sum of these jumps is in the cone {x.z ≥ (1− ρ)|x|}, we have
∣∣∣∣z −

∑

j≤K

∆XTj

/ ∣∣∣
∑

j≤K

∆XTj

∣∣∣
∣∣∣∣ ≤

√
2ρ,

and by using the definition of K and |∆XTK
| ≤ ρ,

∣∣∣λz − ∑

j≤K

∆XTj

∣∣∣ ≤ ρ + λ
√

2ρ.

Thus, from (48), the distance between Xt − λz and the support of Xt is
dominated by ρ + λ

√
2ρ. If now z is in Sµ, by letting ρ → 0, we deduce that

Xt − λz is in supp Xt, and therefore

supp Xt − λz ⊂ supp Xt.

We have proved in Lemma 13 that

supp Xt + λz ⊂ supp Xt,

so the lemma follows.

Proof of Lemma 5 in the case β < 1. From Lemma 13, it is sufficient to
prove that Σ′

µ = IRd. We have

∫

{|x|≤ρ}
1{0≤x.u<ε|x|}(x.u)2µ(dx) ≤ ε2

∫

{|x|≤ρ}
|x|2µ(dx) ≤ Cε2ρ2−β,
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so it follows from the approximate scaling condition (8) that for ε > 0 small
enough and for any unit vector u,

∫

{|x|≤ρ}
1{x.u≥ε|x|}(x.u)2µ(dx) ≥ cρ2−β.

Let us fix such an ε. Then
∫

{|x|≤ρ}
1{x.u≥ε|x|}|x|2µ(dx) ³ ρ2−β

which is equivalent to

µ{x; x.u ≥ ε|x|, |x| > ρ} ³ ρ−β, (49)

and therefore, with the definition (46),

ν
(
{z; z.u ≥ ε}

)
=

∫

{|x|≤1}
1{x.u≥ε|x|}|x|βµ(dx) = ∞.

This means that Sµ intersects {z; z.u ≥ ε} for any unit vector u; thus the
convex cone Σ′

µ must be IRd.

Proof of Lemma 5 in the case β ≥ 1. From Lemma 14, it is sufficient to
prove that Σ′′

µ = IRd. By proceeding as in (49), there exists a positive ε such

that for any unit vector u of IRd,

µ
{
x; |x.u| ≥ ε|x|, |x| > ρ

}
³ ρ−β,

so the ν-measure of the set {z; |z.u| ≥ ε} is infinite; thus this set intersects
Sµ, so Σ′′

µ cannot be orthogonal to u; since u is arbitrary, Σ′′
µ is IRd.
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processes in small time, Tôhoku Math. J. 46 (1994), 443–456.
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